an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

On Massimo Pigliucci on scientism 2: brains r us

leave a comment »

neuroethics is coming…

In his Point of Inquiry interview, Pigliucci mentions Sam Harris’s book The Moral Landscape a couple of times. Harris seeks to make the argument, in that book, that we can establish, sometime in the future, a science of morality. That is, we can be factual about the good life and its opposite, and we can be scientific about the pathways, though there might be many, that lead towards the good life and away from the bad life. I’m in broad agreement about this, though for pragmatic reasons I would probably prefer the term ‘objective’ to ‘scientific’. Just because it doesn’t frighten the horses so much. As mentioned in my previous post, I don’t want to get hung up on terminology. Science obviously requires objectivity, but it doesn’t seem clear to everyone that morality requires objectivity too. I think that it does (as did, I presume, the authors of the Universal Declaration of Human Rights), and I think Harris argues cogently that it does, based on our well-being as a social species. But Pigliucci says this about Harris’s project:

When Sam Harris wrote his famous book The Moral Landscape, the subtitle was ‘How science can solve moral questions’ – something like that. Well that’s a startling question if you think about it because – holy crap! So I would assume that a typical reader would buy that book and imagine that now he’s going to get answers to moral questions such as whether abortion is permissible and in what circumstances, or the death penalty or something… And get them from say physics or chemistry, maybe neuroscience, since Harris has a degree in neuroscience..

Pigliucci makes some strange assumptions about the ‘typical reader’ here. Maybe I’m a long way from being a ‘typical reader’ (don’t we all want to think that?) but, to me the subtitle (which is actually ‘How science can determine human values’) suggests, again, methodology. By what methods, or by what means, can human value – that’s to say what is most valuable to human well-being – be determined. I would certainly not have expected, reading the actual sub-title, and considering the main title of the book, answers to specific moral questions. And I certainly wouldn’t expect answers to those questions to come from physics or chemistry. Pigliucci just mentions those disciplines to make Harris’s views seem more outrageous. That’s not good faith arguing. Neuroscience, however, is closer to the mark. Our brains r us, and if we want to know why a particular mammal behaves ‘badly’, or with puzzling altruism, studying the animal’s brain might be one among many places to start. And yet Pigliucci makes this statement later on re ‘scientistic’ scientists

It seems to me that the fundamental springboard for all this is a combination of hubris, the conviction that what they do is the most important thing – in the case of Sam Harris for instance, it turns out at the end of the book [The Moral Landscape] it’s not just science that gives you the answers, it’s neuroscience that gives you the answers. Well, surprise surprise, he’s a neuroscientist.

This just seems silly to me. Morality is about our thoughts and actions, which start with brain processes. Our cultural practices affect our neural processes from our birth, and even before our conception, given the cultural attitudes and behaviours of our future parents. It’s very likely that Harris completed his PhD in cognitive neuroscience because of his interest in human behaviour and its ethical consequences (Harris is of course known for his critique of religion, but there seems no doubt that his greatest concerns about religious belief are at base concerns about ethics). Yet according to Pigliucci, had Harris been a physicist he would have written a book on morality in terms of electromagnetic waves or quantum electrodynamics. And of course Pigliucci doesn’t examine Harris’s reasoning as to why he thinks science, and most particularly neuroscience and related disciplines, can determine human values. He appears to simply dismiss the whole project as hubristic and wrong-headed.

I know that I’m being a little harsh in critiquing Pigliucci based on a 20-minute interview, but there doesn’t seem any attempt, at least here, to explain why certain topics are or should be off-limits to science, except to infer that it’s obvious. Does he feel, for example, that religious belief should be off-limits to scientific analysis? If so, what do reflective non-religious people do with their puzzlement and wonder about such beliefs? And if it’s worth trying to get to the bottom of what cultural and psychological conditions bring about the neurological networking that disposes people to believe in a loving or vengeful omnipotent creator-being, it’s also worth trying to get to the bottom of other mind-sets that dispose people to behave in ways productive or counter-productive to their well-being. And the reason we’re interested isn’t just curiosity, for the point isn’t just to understand our human world, but to improve it.

Finally Pigliucci seems to confuse a lack of interest, among such people in his orbit as Neil deGrasse Tyson and Lawrence Krauss, in philosophy, especially as it pertains to science, with scientism. They’re surely two different things. It isn’t ‘scientism’ for a scientist to eschew a particular branch of philosophy any more than it is for her to eschew a different field of science from her own, though it might seem sometimes a bit narrow-minded. Of course, as a non-scientist and self-professed dilettante I’m drawn to those with a wide range of scientific and other interests, but I certainly recognise the difficulty of getting your head around quantum mechanical, legal, neurological, biochemical and other terminology (I don’t like the word ‘jargon’), when your own ‘rabbit hole’ is so fascinating and enjoyably time-consuming.

There are, of course, examples of scientists claiming too much for the explanatory power of their own disciplines, and that’s always something to watch for, but overall I think the ‘scientism’ claim is more abused than otherwise – ‘weaponised’ is the trendy term for it. And I think Pigliucci needs to be a little more skeptical of his own views about the limits of science.

Written by stewart henderson

May 26, 2019 at 3:09 pm

On Massimo Pigliucci on scientism: part 1 – what is science?

leave a comment »

Massimo Pigliucci, who seems like a nice enough bloke…

 

I’ve written a couple of posts on scientism (all references below), which is for some reason a topic that always gets me exercised. So a recent brief interview with the philosopher Massimo Pigliucci, on the Point of Inquiry podcast, has set me back on the wagon. This blog post will be a piece by piece analysis of (some bits of) the interview. 

I’ll begin with the Point of Inquiry host Kavin Senapathy’s intro, in which she gives a definition of scientism as:

this idea that the scientific method is the only worthwhile way of answering questions, and that any question that can’t be tackled using science is therefore unimportant or frivolous, and this often seems to apply to areas of social or political concern. In practice, those with a scientific approach try to colonise other areas of expertise and call them science. So this is really an ideology

So scientism is an ideology (and Pigliucci agrees with this later in the interview). I must say I’m skeptical of both terms, but let me focus for now on ‘ideology’. I once recall, during a meeting of secular and religious humanists, an old bloke beside me describing atheism as an ideology. The term’s often abused, and almost invariably used as a put-down. Only the other day, our former PM, John Howard, not known for his scientific literacy, complained that the recent federal election was marred by ‘climate change ideology’, by which he clearly meant the view that anthropogenic global warming is an issue. 

More important here, though, is the attempt to define scientism, which makes me wonder if scientism is really a thing at all. The problem for me here is that it’s obvious that any area of ‘social or political concern’ will benefit from rigorous thought, or inference, based on various forms of evidence. Whether you want to call it science or not isn’t, for me, a major issue. For example, a state’s immigration policy would best be based on a range of concerns and analyses about its population, its resources, its productivity, its degree of integration, its previous experience of immigration, its relations with neighbours, the needs and aspirations of the immigrants, and so on. These factors can’t simply be intuited (though politicians generally do base their decisions on intuition, or ideology), but whether such analysis rises to the level of science doubtless depends on how you define science. However, it would clearly benefit from science in the form of number-crunching computer technology – always bearing in mind the garbage-in-garbage-out caveat. 

So, it’s not about ‘colonising’ – it’s about applying more rigour, and more questioning, to every area of human activity. And this is why ‘scientism’ is often a term of abuse used by the religious, and by ‘alternative medicine’ and ‘new age’ aficionados, who are always more interested in converts than critiques. 

Returning to the interview, Pigliucci was asked first off whether it’s a common misconception among skeptics that there’s a thing called ‘the scientific method’: 

Yes I think it is, and it’s actually a common misconception among scientists, which is more worrisome. If you pick up a typical science textbook… it usually starts out with a short section on the scientific method, by which they usually mean some version of… the nomological deductive model. The idea is that science is based firstly on laws…. the discovery of laws of nature, and ‘deductive’ means that mostly what is done is deduction, the kind of inferential reasoning that mathematicians and logicians do. But no scientists have ever used this model, and philosophers of science have debated the issue over the last century of so and now the consensus among such philosophers is that scientists do whatever the hell works….

(I’ve ‘smoothed out’ the actual words of Pigliucci here and elsewhere, but I believe I’ve represented his ideas accurately). I found this an extraordinary confession, by a philosopher of science, that after a century of theorising, philosophers have failed abysmally in trying to define the parameters of the scientific process. I’m not sure if Pigliucci understands the significance, for his own profession, of what he’s claiming here. 

I have no problems with Pigliucci’s description that scientists ‘do what works’, though I think there’s a little more to it than that. Interestingly, I read a few books and essays on the philosophy of science way back in my youth, before I actually started reading popular science books and magazines, and once I plugged into the world of actual scientific experimentation and discovery I was rarely tempted to read that kind of philosophy again (mainly because scientists and science writers tend to do their own practical philosophising about the field they focus on, which is usually more relevant than the work of academic philosophers). I came up, years ago, with my own amateur description of the scientific process, which I’ll raise here to the status of Universal Law:

Scientists employ an open-ended set of methods to arrive at reliable and confirmable knowledge about the world.

So, while there’s no single scientific method, methodology is vital to good science, for hopefully obvious reasons. Arriving at this definition doesn’t require much in the way of philosophical training, so I rather sympathise with those, such as Neil Degrasse Tyson, Sam Harris and Richard Dawkins, who are targeted by Pigliucci as promoters or practitioners of scientism (largely because they feel much in the philosophy of science is irrelevant to their field). But first we really need to get a clearer view of what Pigliucci means by the term. Here’s his attempt at a definition:

Scientism is the notion that some people apply science where either it doesn’t belong or it’s not particularly useful. So, as betrayed by the ‘ism’, it’s an ideology. It’s the notion that it’s an all-powerful activity and that all interesting questions should be reducible to scientific questions. If they’re not, if science can’t tell you anything, then either the question is uninteresting or incoherent. This description of scientism is generally seen as a critique, though there are some who see scientism as a badge of honour.

Now I must say that I first came across scientism in this critical sense, while watching a collection of speeches by Christians and pro-religion philosophers getting stuck into ye olde ‘new atheism’ (see the references below). Their views were of course very defensive, and not very sophisticated IMHO, but scientism was clearly being used to shelter religious beliefs, which cover everything from morality to cosmology, from any sort of critique. There was also a lot of bristling about scientific investigations of religion, which raises the question, I suppose, as to whether anthropology is a science. It’s obvious enough that some anthropological analyses are more rigorous than others, but again, I wouldn’t lose any sleep over such questions.

But the beauty of the scientific quest is that every ‘answer’ opens up new questions. Good science is always productive of further science. For example, when we reliably learned that genes and their ‘mutations’ were the source of the random variation essential to the Darwin-Wallace theory of evolution, myriad questions were raised about the molecular structure of genes, where they were to be found, how they were transferred from parents to offspring, how they brought about replication and variation, and so forth. Science is like that, the gift that keeps on giving, turning ‘unknown unknowns’ into ‘known unknowns’ on a regular basis. 

I’ve read countless books of ‘popular’ science – actually many of them, such as Robert Sapolsky’s Behave, James Gleick’s The information, and Oliver Morton’s Eating the the sun, are fiendishly complex, so not particularly ‘popular’ – as well as a ton of New Scientist, Scientific American and Cosmos magazines, and no mention has been made of ‘the scientific method’ in any of them, so Pigliucci’s claim that many scientists believe in some specific method just doesn’t ring true to me. But let me turn to some more specific critiques.

When Sam Harris wrote The Moral Landscape…he wrote in an endnote to the book that by science he meant any kind of reasoning that is informed by facts. Well, by that standard when my grandmother used to make mushroom risotto for me on Sundays, she was using science, because she was reasoning about what to do, based on factual experience. Surely that doesn’t count as science [laughing]… Even if you think of ‘food science’ as a science that’s definitely not what my grandmother was doing. It’s this attempt to colonise other areas of expertise and call them science…

In my view Pigliucci disastrously misses the point here. Making a delicious risotto is all about method, as is conducting an effective scientific experiment. It’s not metaphorical to say that every act of cooking is a scientific experiment – though of course if you apply the same method to the same ingredients, MacDonalds-style, the experimental element diminishes pretty rapidly. Once someone, or some group, work out how to make a delicious mushroom risotto (I’m glad Pigliucci chose this example as I’ve cooked this dish countless times myself!) they can set down the recipe – usually in two parts, ingredients and method – so that it can be more or less replicated by anyone. Similarly, once scientists and technologists work out how to construct a functioning computer, they can set down a ‘computer recipe’ (components and method of construction) so that it can be mass-produced. There’s barely any daylight between the two processes. The first bread-makers arguably advanced human technology as much as did the first computer-makers.

I have quite a bit more to say, so I’ll break this essay into two parts. More soon.

References – apart from the first and the last, these are all to pieces written by me.

Point of Inquiry interview with Massimo Pigliucci

Discussion on scientific progress and scientism, posted April 2019

A post about truth, knowledge and other heavy stuff, posted March 2013

politics and science need to mix, posted August 2011

On supervenience, posted January 2011

Roger Scruton and the atheist ‘fashion’, posted January 2011

a critique of Johnathan Ree’s contribution, posted January 2011

Marilynne Robinson tries her hand at taking on ‘new atheism’, posted January 2011

After new atheism: where now for the god debate? Talks by Marilynne Robinson, Roger Scruton and Jonathan Ree

Written by stewart henderson

May 23, 2019 at 11:50 am

towards James Clerk Maxwell 3 – Benjamin Franklin and Coulomb’s Law

leave a comment »

Coulomb’s law – attraction and repulsion

Canto: So we’ve been looking at electricity and magnetism historically, as researchers, scientists, thinkers, experimenters and so on have managed to piece these processes together and combine them into the one thing, electromagnetism, culminating in J C Maxwell’s equations…

Jacinta: Or going beyond those equations into the implications. But of course we’re novices regarding the science and maths of it all, so we should recommend that real students of this stuff should go to the Khan academy lectures, or Matt Anderson’s lectures for the real expert low-down. As will we. But we need to point out, if only to ourselves, that what we’re trying to get our heads around is really fundamental stuff about existence. Light, which is obviously fundamental to our existence, is an electromagnetic wave. So, think magnetism, think electricity, and think light.

Canto: Right, so we’re going back to the eighteenth century, and whatever happens after Hauksbee and Polinière.

Jacinta: Well, scientists – or shall we say physical scientists, the predecessors of modern physicists – were much influenced throughout the eighteenth century by Newton, in particular his inverse square law of gravity:

F=G{\frac {m_{1}m_{2}}{r^{2}}}\

Newton saw gravity as a force (F), and formulated the theory that this force acted between any two objects (m1 and m2 – indicating their masses) in a direct line between their respective centres of mass (r being the length of that line, or the distance between those centres of mass). This force is directly proportional to the product of the two masses and inversely proportional to the distance. As to G, the gravitational constant, that’s something I don’t get, as yet. Anyway, the success of Newton’s theory, especially the central insight that a force diminishes, in a precise way, with distance, affected the thinking of a number of early physical scientists. Could a similar theory, or law (they didn’t think in terms of theory then) apply to electrical forces? Among those who suspected as much were the mathematician Daniel Bernoulli, who made major contributions to fluid dynamics and probability, and Alessandro Volta, who worked on electrical capacitance and storage, the earliest batteries.

Canto: And Joseph Priestley actually proposed an inverse square law for electricity, but didn’t work out the details. Franz Aepinus and Benjamin Franklin were also important 18th century figures in trying to nut out how this force worked. All of this post-Newtonian activity was putting physical science on a more rigorous and mathematical footing. But before we get to Coulomb and his law, what was a Leyden Jar?

Jacinta: Leyden jars were the first capacitors. They were made of glass. This takes us back to the days of Matthias Bose earlier in the 18th century, and even back to Hauksbee. Bose, a professor of natural philosophy at the University of Wittenberg, worked with and improved Hauksbee’s revolving glass-globe machine to experiment with static electricity. He added a metal ‘prime conductor’ which accumulated a higher level of static charge, and gave spectacular public demonstrations of the sparks he created, using them to set alcohol alight and to create ‘beatification’ effects on a woman wearing a metal helmet. All great japes, but it promoted interest in electricity on the continent. The trick with alcohol inspired another experimenter, Jurgen von Kleist, to invent his Leyden jar, named for Kleist’s university. It was a glass container filled with alcohol (or water) into which was suspended a metal rod or wire, connected to a prime conductor. The fluid collected a great deal of electric charge, which turned out to be very shocking to anyone who touched the metal rod. Later Leyden jars used metal foil instead of liquid. These early capacitors could store many thousands of volts of electricity.

Canto: At this time, in the mid-eighteenth century, nobody was thinking much about a use for electricity, though I suppose the powerful shocks experienced by the tinkerers with Leyden jars might’ve been light-bulb moments, so to speak.

Jacinta: Well, take Ben Franklin. He wasn’t of course the first to notice that electrostatic sparks were like lightning, but he was possibly the first to conduct experiments to prove the connection. And of course he knew the power of lighting, how it could burn down houses. Franklin invented the lightning rod – his proudest invention – to minimise this damage.

Canto: They’re made of metal aren’t they? How do they work? How did Franklin know they would work?

Jacinta: Although the details weren’t well understood, it was known in Franklin’s time that some materials, particularly metals (copper and aluminium are among the best), were conductors of electricity, while others, such as glass, were insulators. He speculated that a pointed metal rod, fixed on top of buildings, would provide a focal point for the electrical charge in the clouds. As he wrote: “The electrical fire would, I think, be drawn out of a cloud silently, before it could come near enough to strike….” He also had at least an inkling of what we now call ‘grounding’, as per this quote about the design, which should use “upright Rods of Iron, made sharp as a Needle and gilt to prevent Rusting, and from the Foot of those Rods a Wire down the outside of the Building into the Ground”. He was also, apparently the inventor of the terms negative and positive for different kinds of charge.

Canto: There are different kinds of charge? I didn’t know that.

Jacinta: Well you know of course that a molecule is positively charged if it has more protons than electrons, and vice versa for negative charge, but this molecular understanding came much later. In the eighteenth century electricity was generally considered in terms of the flow of a fluid. Franklin posited that objects with an excess of fluid (though he called it ‘electrical fire’) were positively charged, and those with a deficit were negatively charged. And those terms have stuck.

Canto: As have other other electrical terms first used by Franklin, such as battery, conductor, charge and discharge.

Jacinta: So let’s move on to Charles-Augustin De Coulomb (1736-1806), who was of course one of many scientists and engineers of the late eighteenth century who were progressing our understanding and application of electricity, but the most important one in leading to the theories of Maxwell. Coulomb was both brilliant and rich, at least initially, so that he was afforded the best education available, particularly in mathematics…

Canto: Let me write down Coulomb’s Law before you go on, because of its interesting similarity to Newton’s inverse-square gravity law. It even has one of those mysterious ‘constants’:

{\displaystyle F=k_{e}{\frac {q_{1}q_{2}}{r^{2}}},}

where F is the electrostatic force, the qs are particular magnitudes of charges, and r is the distance between those charges.

Jacinta: Yes, the Coulomb constant, ke, or k, is a constant of proportionality, as is the gravitational constant. Hopefully we’ll get to that. Coulomb had a varied, peripatetic existence, including a period of wise retirement to his country estate during the French revolution. Much of his work involved applied engineering and mechanics, but in the 1780s he wrote a number of breakthrough papers, including three ‘reports on electricity and magnetism’. He was interested in the effect that distance might have on electrostatic force or charge, but it’s interesting that these papers placed electricity and magnetism together. His experiments led him to conclude that an inverse square law applied to both.

Canto: I imagine that these constants required a lot of experimentation and calculation to work out?

Jacinta: This is where I really get lost, but I don’t think Coulomb worked out the constant of proportionality, he simply found by experimentation that there was a general law, which he more or less stated as follows:

The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.
The force is along the straight line joining them. If the two charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.

It seems the constants of proportionality are just about units of measurement, which of course were different in the days of Coulomb and Newton. So it’s just about measuring stuff in modern SI units using these laws. It’s about conventions used in everyday engineering, basically. I think.

Canto: Equations like these have scalar and vector forms. What does that mean?

Jacinta: Basically, vector quantities have both magnitude and direction, while scalar quantities have magnitude only. The usual example is speed v velocity. Velocity has magnitude and direction, speed only has magnitude. Or more generally, a scalar quantity has only one ‘dimension’ or feature to it in an equation – say, mass, or temperature. A vector quantity has more than one.

Canto: So are we ready to tackle Maxwell now?

Jacinta: Hell, no. We have a long way to go, with names like Gauss, Cavendish and Faraday to hopefully help us along the path to semi-enlightenment. And I think we need to pursue a few of these excellent online courses before we go much further.

References

Khan academy physics (160 lectures)

Matt Anderson physics (191 lectures)

https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation

https://www.britannica.com/technology/Leyden-jar

http://www.americaslibrary.gov/aa/franklinb/aa_franklinb_electric_1.html

http://www.revolutionary-war-and-beyond.com/benjamin-franklin-and-electricity-letters.html

https://en.wikipedia.org/wiki/Coulomb_constant

https://www.britannica.com/biography/Charles-Augustin-de-Coulomb

https://www.britannica.com/science/Coulombs-law

https://en.wikipedia.org/wiki/Coulomb%27s_law

Written by stewart henderson

May 18, 2019 at 6:04 pm

situation USA 2 – very likely, the worst is yet to come

leave a comment »

The USA, over the past two and a half years, has been the object of a global ridicule and opprobrium never experienced before in its history, and it’s largely deserved. And the reason lies in a flaw in democracy pointed out by Greek philosophers, unabashed anti-democratic elitists, some 2500 years ago. Their concern was that the people could be too easily swayed by populist demagogues, individuals who, either through self-delusion or basic deceit, promised everything and delivered nothing, or worse.

There’s a famous quote, attributed to Churchill, that democracy ‘is the worst system of government, apart from all the others’. That description should be taken seriously. There’s no perfect system of government, in fact far from it. And democracy, in its purest form, is never practised anywhere. I’ve heard it said that a free press and an independent judiciary are two of the ‘pillars of democracy’. This is false. They’re in fact bulwarks against democracy. Both of these institutions are elite meritocracies. Another essential bulwark against democracy is an independent science and technology sector. If we based our acceptance of science on popular vote, we’d almost certainly still be living in caves, subsisting on the most basic requirements for survival. So let’s not worship democracy, but nor should we throw it out with the bathwater.

Democracy’s biggest saving grace is that it is inclusive. Everybody gets to have a say. One possible vote for each adult – assuming there’s no corruption of the process. In this respect, if nothing else, everybody is equal. Yet we know that no two people reflect in an ‘equal’ way, whatever that means, before casting their vote. Some are massively invested in voting, others barely at all, and their investments go in innumerable directions. Some of those directions never change, others zig-zag all over the place. And history shows, as the Greek philosophers knew well, that a licence to vote doesn’t turn anyone into a discerning voter.

The USA, it seems to me, suffers from two problems – too much democracy on the one hand, and too great a concentration of power on the other. They say that in the USA, anyone can become President. This is something Americans like to brag about. It’s not true of course, but even if it were, it wouldn’t be a positive. There appears to be no screening for such candidature. Some Americans are calling for extreme vetting of immigrants, but nobody appears to be calling for the same for Presidential candidates. You might argue that the same goes under the Westminster system of democracy, but in fact there is such a system, albeit informal, for attaining the position of Prime Minister. She must first gain the approval of her party, her team (and she can be dumped by that team at any time). In the 2016 US election, the candidate Trump by-passed the party he claimed to be a member of, and appealed entirely to the people, with a wide range of vague promises and claims about his own brilliance and effectiveness. The business cognoscenti knew well enough that Trump was a buffoon, a blowhard and a flim-flam man, but they also knew that his presidency, in being good for his own business, would be good for other businesses too, especially in the field of taxation. The Republican Party as a whole – with a number of notable exceptions – fell in line. Those who believed in minimal government recognised that Trump’s noisy incompetence would actually bring about minimal government by default, and give the governmental process a bad name, which was all fine by them. The question of ethics rarely entered into it.

As a distant watcher of what I’ve called the slow-motion train wreck of the Trump presidency, I’ve learned more than I ever thought I would know about the US presidential system, and more than I ever wanted to know about Trump himself.

For some time, Trump was nothing more than a funny name to me. My first full-on experience of him must have come from an early showing of ‘The Apprentice’, probably accidentally stumbled on through channel-hopping. I’ve never taken much interest in the business world, mea culpa. Within literally seconds, I was thinking ‘If I didn’t know better, I’d assume this was a black comedy. The host talks total gobshite, and the contestants, all actors, treat him like a deity. His very name is meant as a joke – he trumps everyone else in spite of being tasteless, boorish and pig-ignorant – and the contestants, who are put up in a monument to vulgarity called ‘Trump Tower’, swoon at all the gimcrack opulence. No better caricature of the Ugly American has ever been created’. Yet I knew that this was no caricature. Or rather, Trump was a caricature, but also a real human being.

What I didn’t know then, and what I’ve learned since his accession to the presidency, was the extent of Trump’s criminality. This has been fully revealed through a couple of New York Times stories, but I first learned about it through Sam Harris podcasts and other outlets, as well as through the words and behaviour of Trump himself, and his thuggish cronies. His use of standover men, fixers and the like has all the markings of organised crime – or somewhat disorganised crime in Trump’s case. The fact that he has gotten away with this behaviour for decades is a testament to the problems of the US justice system.

Trump became President with a minority of votes – this time revealing a problem with the federal electoral system. Claims by pundits such as Niall Ferguson that Putin’s interference in that election had a minimal effect were either naive or politically motivated. The Putin dictatorship’s actions were sophisticated and brilliantly targeted, and the subsequent response of Trump to the clear evidence of that interference should have been enough to have him thrown out of office. Another massive problem with the US federal system.

Sensible Americans are now faced with the problem of getting rid of Trump, and engaging in the root and branch reform of the disastrous system that allowed Trump’s rise to and maintenance of power. It seems, from other pundits I’ve read, that the US Presidency has experienced a kind of ‘dictatorship creep’ over the years, and this now needs to be confronted directly. The judiciary, for example needs to be fully independent, with the highest positions decided upon by judicial peers. Presidential emoluments need to be eliminated through clear, solid law. Presidential pardoning powers need to be sharply restricted, or preferably removed from the President altogether and placed in the hands of senior law officials. The presentation of all available taxation documents must be a sine qua non of presidential candidacy. If Presidents are to be directly elected – not a great idea IMHO – it should be through a first-past-the-post, one-vote-one-value system. Presidential immunity must be jettisoned, and if this interferes with the President’s role, this should scream to the American people that the President’s role is too burdensome, and that governmental power needs to be less concentrated and more distributed.

All of the preceding, and more, seems obvious to an outsider, but among Americans, brought up since infancy to believe they have the best government in the multiverse, self-criticism in this area is hard to come by. Possibly more abuse of the system by Trump and his enablers will wake Americans up to what’s needed, but I remain skeptical.

Which brings us back to the immediate situation. I have to admit, what has surprised me more than anything about this presidency is that Trump’s following hasn’t been reduced substantially since falling to around the 40% mark very early in his term. Clearly, his base, much-despised by Trump himself, has gained nothing from his incumbency, as opposed to the super-rich (small in number but gargantuan in power), who see through Trump but cynically support his lazy, neglectful attitude to government administration. The fact that this base is solid and easily aroused reveals a long-standing problem in America’s individualistic, mistrustful, and massively divided society. Trump is wily enough to try to take advantage of this discontent, especially as the law appears to be closing in on him. He may not have the numbers to win another election, but he is very likely to use those numbers to do as much damage to America’s much-vaunted but clearly very fragile separation of powers as he possibly can. I’m unfortunately quite convinced that the worst of the Trump presidency is yet to come.

Written by stewart henderson

May 13, 2019 at 7:30 pm

Towards James Clerk Maxwell 2 – Francis Hauksbee’s experiments

leave a comment »

an electrostatic generator – one of Hauksbee’s many ingenious experimental devices

Canto: So we’ve witnessed electricity since we’ve had the wit to witness, in lightning. And through our attempts to understand and harness those scary bursts of energy we’ve transformed our world.

Jacinta: We’ve written about lightning before, but the info we presented there was accumulated over centuries. Now we’re going to travel back to the early years of the Royal Society in England, the early 1700s, a mere 300 years ago, to reflect on the first experiments with electricity – remembering that there was no electric power and light in those days, that gods were in the air and much was mysterious.

Canto: Electricity from the start was much sexier, and scarier, than magnetism – lightning very very frightning was the most obvious physical manifestation, and its power was easily recognised. It could kill at a stroke, while magnetism seemed all about metals getting stuck together, and needles pointing north. Interesting, but hardly earth-shattering.

Jacinta: Lightning was all about gigantic sparks shattering the sky, and the ancients, who spent so much of their time in darkness, must have seen other, less impressive and dangerous sparks, the sparks of static electricity, and wondered.

Canto: In the recent BBC documentary The story of electricity, narrator Jim Al-Khalili begins by describing Francis Hauksbee‘s experiments with static electricity and electroluminescence in the early 1700s, which dazzled visitors to the Royal Society. These were the first properly documented experiments with the mysterious force, and a collection of his papers describing these experiments was widely read by the 18th century cognoscenti – including Joe Priestley and Ben Franklin. He employed the newly-invented air pump (simply a pump for pushing out air, as in a common bike pump), popularised in England by Robert Hooke some decades before. Hauksbee made his own improvements, enabling the pump to create a vacuum.

Jacinta: Yes Hauksbee was a more interesting figure than The story of electricity presents. He didn’t ‘lose interest’ but worked on his experiments and reflected on them until his final illness in 1713 – and I’m thinking that illness, since he was only in his late forties – may have been due to mercury poisoning. Hauksbee was ‘lower class’ so few details of his life are documented. However, in these experiments he wasn’t thinking so much of electricity as of ‘attractive forces’. Also as an experimenter who must always have seen himself as an underling (in his book he mentions his ‘want of a learned education’), he doubtless felt obliged to follow the guidance of his Royal Society ‘master’, Newton, which took him into different fields of research….

Canto: The term ‘electricity’ was possibly not in common use then? You’re right, though, about Hauksbee, who rose from obscurity to become a member of the Royal Society, probably under the auspices of Newton. In late 1705, as a result of some spectacular effects displayed to the Society he became intrigued by ‘mercurial phosphorus’. The fact that mercury, in a vacuum, glowed when shaken, had already been noted by Jean Picard, a 17th century French astronomer, and the Swiss mathematician Johann Bernoulli.

Jacinta: And this has to do with electricity?

Canto: We shall see. Hauksbee wanted to work out the conditions under which this mercurial light was produced. He found that the more air in the container, the weaker the light. Also the light’s intensity depended on the movement of the mercury. He concluded that the friction of the mercury against the glass was the major cause. But was it only mercury that had this property, and was it only glass that brought it out? He experimented with other materials, finding a means of rubbing them together in a section of his air pump, Amber rubbed with wool produced a light, brightened in the absence of air. By contrast metal on flint only produced sparks when air was present. Remember, oxygen wasn’t known about at the time. In late 1705 Hauksbee presented one of his most spectacular experiments for the Society. Ingenious instrument-maker that he was, he created a glass globe, from which air could be pumped in and out, on a rotating spindle. The spinning globe came into contact with woollen cloth, and the contact created a weird purple light inside the evacuated globe, which reduced as air was let in. It was a fantastic mystery.

Jacinta: I’m hoping you can solve it.

Canto: Great expectations indeed. He experimented further, and found that when he pressed his own hands against a spinning evacuated globe, the same bright purple glow was produced, which again faded when air was let in to the globe.

Jacinta: Okay, what Hauksbee was exploring in these experiments are what we now call triboelectric effects. I remember playing around with this in schooldays by rubbing a plastic pen along the sleeve of my jersey and watching the fibres stand on end as the pen passed, and hearing the prickling sound of static electricity. The pen was then capable of lifting scraps of paper from the desk, for a time. But I didn’t see any purple lights and I’m not sure how the presence or absence of air relates to it all.

Canto: Yes, triboelectricity is about the exchange of electric charge between different materials – the build-up and discharge of electrical energy. It seems that some materials have a more or less positive charge and some have a more or less negative or opposite charge (because positive and negative are really arbitrary terms, the key point is their relation to each other), and we know that like charges repel and opposite charges attract.

Jacinta: You’ve brought up the word ‘charge’ here, and I’m wondering if that’s just an arbitrary word too – like degree of positive charge just means degree of being repulsed by its opposite, negative charge. In other words, different materials are attracted to or repulsed by each other to varying degrees under various conditions, and that degree or ‘amount’ of attraction or repulsion is referred to as ‘charge’. So ‘charge’ is a relational term…

Canto: Ummm. Maybe. In any case, if you take these different materials down to the atomic level, and I’m not sure how you take plastic and wool down to that level – I mean I know plastic is a petrochemical product, but wool, which I’ve just looked up, has a very complex chemistry – but the fact that the plastic pen, after some rubbing, pulls the fibres of your woollen sleeve towards it is because there’s an attractive force operating between opposite charges. In fact there’s a movement of electrons between the materials, from the wool to the plastic. This electron transfer leaves those woollen fibres with a net positive charge, which is attracted to the now negatively charged plastic due to the electron flow. I think.

Jacinta: Mmm. None of this was understood in the early eighteenth century, obviously. But before we go back there, we’ll stay with this concept of charge, which is nowadays calculated as a fundamental or base unit, based on the electron or its opposite, charge-wise, the proton. These elementary particles have the same but opposite charge, though they’re very different in mass (something which seems suspect to me). Anyway, taking things on trust, a unit of charge is ‘defined’ in standard macro terms as a coulomb, named for the 18th century French physicist Charles-Augustin de Coulomb. One coulomb equals approximately 6.24 x 1018 protons (or electrons). We’ll come back to this later, no doubt. Returning to Hauksbee’s experiments, he soon realised that it was the glass, not the mercury inside it, that was the agent of electrical effects. His experiments with glass globes were written down in great detail, a boon to later researchers.

Canto: Interestingly, I’ve discovered that, more or less exactly at the same time, one Pierre Polinière was conducting and presenting experiments on electroluminescence in Paris:

A closer examination of these experiments reveals not only that Polinière had personally presented them before the French Academy of Sciences, but that Polinière and Hauksbee, starting from a common interest in the ‘mercurial phosphor’, had conducted similar investigations and had in fact simultaneously announced their independent discoveries of the luminescence of evacuated glass containers.

Pierre Polinière, Francis Hauksbee and electroluminescence: a case of simultaneous discovery.
David Corson, 1968.

Jacinta: So we might finish by trying to explain our current understanding of electroluminescence (EL) and its applications. It’s a sort of combo of electricity and light, as you can imagine, or electrons and photons on the level of particles. For example, semiconductors emit light when subjected to a strong electric field or current….

Canto: Is that the basis of LED lighting?

Jacinta: Absolutely. Electrons in the semiconductor material recombine with electron holes, emitting energy in the form of photons. So it has taken us three centuries to really effectively harness the electroluminescent effects demonstrated by Hauksbee in the early days of the Royal Society.

Canto: What are electron holes? I’m thinking not ‘holes in electrons’ but holes left by electrons as they’re displaced in an electric current?

Jacinta: Yes, or almost. It’s like the lack of an electron where you might expect an electron to be. These holes where you might expect an electrically charged particle (an electron) to be, act like positively charged particles – a positron, say – and move through a lattice like an electron does. We could get into very complicated electronics here, if we had the wherewithal, but these holes are examples of quasiparticles, which mostly exist within solids. Fluid movement within solids (not apparently a contradiction in terms) is extremely complicated. Who would’ve thunk it? This movement of electrons and protons within solids is ‘regulated’ by Coulomb’s Law. Remember him? We’ll be getting to that law very soon, as it’s essential to the field of electromagnetism. And that’s our topic don’t forget.

situation USA 1: Billy Barr’s memo, etc

leave a comment »

silly Billy

Jacinta: So we can’t get enough of the wacky world of US federal politics, maybe from a schadenfreudish perspective, since we’re not Americans and have no intention of setting foot in that mad bad sad world…

Canto: Fully of lovely people I should add. Very diverse.

Jacinta: Very, let’s leave it at that. But we’re fascinated that Trump is still trumpeting, and that the nation’s better half, actually more than half, has still not found a way to rid themselves of him. I’m very reluctant to attribute any smarts to Trump, because criminal types, in spite of many movie depictions, are rarely smart enough to avoid getting caught. Yet Trump is still at large. He’s obviously done many things right, re self-preservation, and even self-aggrandisement.

Canto: We think of criminals as dumb because they’ve been caught. That’s why we call them criminals.

Jacinta: Good point. Anyway, the slow train crash that’s US federal politics today may not be the Trump crash. He may well walk away from the wreck unscathed. The number of final scenarios from here seems virtually infinite.

Canto: So let’s jump right in. The Mueller team has produced a report, redacted to the public, but mostly available (with almost entirely unredacted summaries of each of the two volumes, on conspiracy and obstruction respectively), which we have read and which we’ve found to be extremely critical of the administration and Trump himself. We’ll be quoting from the report throughout this fun, multi-post analysis.

Jacinta: But first we want to have a look at the role being played by US Attorney-General William Barr, who’s currently standing between the Mueller Report and its reception and treatment, by Congress, by the US justice system, and by the American public.

Canto: Barr hasn’t been the A-G for long, having taken office on Valentine’s Day of 2019.

Jacinta: A loving day for Billy and Donny. Some background to the appointment. Trump nominated Barr for the position on December 7 2018, a month after the resignation of the previous A-G, Jeff Sessions. Trump, as example F of the Mueller Report’s many examples of possible or probable obstruction of justice relates, had been trying to get Sessions to either ‘unrecuse’ himself (a legal nonsense, according to many) from overseeing the Mueller Report, or to resign, throughout Sessions’ tenure in the position. Barr, who held the position of A-G back in the early nineties, was clearly aware of Trump’s frustration with Sessions and his desire for an A-G who would protect him, support him, be on his team, etc, and had sent, unsolicited, a 19-page memo, available online, which is well worth reading. You don’t have to be a lawyer to recognise the many flaws in Barr’s arguments, you simply need a good sense of logic, decency and fairness.

Barr’s memo begins badly, with the title – Re: Mueller’s ‘obstruction’ theory. The scare quotes are meant to imply that obstruction isn’t really a thing in this case, and possibly for Presidents in general. But the most telling word is ‘theory’, because, as we have seen from the report itself, and no doubt this is a feature of Mueller’s legal career, the Special Counsel doesn’t theorise much, he relies on case law and precedent, which he cites at enormous length, to hammer home his findings.

Canto: Yes, just reading the memo, the word ‘theory’ comes up in the second and third paras. I also note the use of scary words like ‘demand’, ‘threat’, ‘interrogation’ and ‘coerce his submission’, all used in reference to Mueller’s behaviour towards Trump, all piled up in the first couple of paras. It’s no wonder that some have surmised that this memo was intended for an audience of one – especially if that person hasn’t the attention span to read more than a page a month.

Jacinta: Well, Barr quickly moves to legalese, using terms like actus rea (actually actus reus) and mens rea – which mean, respectively, a criminal act, and the intent, or knowledge of guilt. What he writes in these next paragraphs is unexceptionable – he agrees that the President is bound by standard obstruction laws, and that Nixon and Bill Clinton were rightly impeached on obstruction in the form of impairment of evidence. But then he goes on to write:

Enforcing these laws against the President in no way infringes on the President’s plenary [absolute] power over law enforcement because exercising this discretion – such as his complete authority to start or stop a law enforcement proceeding – does not involve commission of any of these inherently wrongful, subversive acts.

Barr Memorandum, June 2018, p2

Canto: Hmmm, I think I see what Barr is trying for here. But first, why isn’t it jaw-dropping to grant absolute power to one person over law enforcement? Only in America, surely. The land of the individual super-hero. But what I think Barr is arguing here is that Trump’s attempt to stop a proceeding – the Mueller enquiry – was perfectly legal due to his plenary power. So, even if Putin’s Russia interfered with the 2016 election ‘in sweeping and systematic fashion’, and did so to substantially advantage Trump, and the Trump campaign knew about and welcomed that interference, it was perfectly legitimate for Trump to shut down an investigation into that interference and the Trump campaign’s response. Based on that view, all attempts to get the enquiry stopped or to change its focus were legitimate. End of story.

Jacinta: You’re getting there. And fortunately we don’t have to rely only on our own brilliant minds to critique this memo, as many lawyers have already done so. But let’s continue to go it alone for a while, and then see what others have to say. Barr admits at the outset that he’s ‘in the dark’ about many facts, yet he’s happy to speculate, claiming that ‘as far as I know’, and ‘seemingly’, this is what Mueller is actually doing – for example ‘proposing an unprecedented expansion of obstruction laws’. Again, we’re not lawyers, but I note that Mueller cites precedent many times in his report. And he doesn’t include in his examples of possible/probable obstruction the multitudinous tweets and speeches in which Trump denigrates the Special Counsel’s investigation as a witch-hunt and the Russian interference as a hoax. In a broad sense, this appears to me to be witness tampering – using the bully pulpit in the manner of dictators of the past, repeating a lie over and over until it becomes true. The witnesses here being the American public. But back to the memo. Barr homes in on USC 1512, subsection c2, which Mueller does indeed use in his report, but c2 seems to me clear-cut about obstruction, and covers many acts committed by Trump which Barr glosses over or doesn’t mention. In fact Barr seems to think that the only possibly obstructive act committed by Trump was the firing of Comey. Here is subsection c:

(c) Whoever corruptly (1) alters, destroys, mutilates or conceals a record, document or other object, or attempts to do so, with the attempt to impair the object’s integrity, or availability for use in an official proceeding; or (2) otherwise obstructs, influences, or impedes any official proceeding, or attempts to do so.

Further, Barr states that, as far as he knows, Mueller isn’t accusing Trump of evidence tampering. But how far does Barr know? This is an assumption, and on the basis of that assumption he accuses Mueller of an over-reach which in any case makes no sense on the basis of a straightforward reading of c2.

Canto: Well according to Barr, c2 shouldn’t be read as standing alone, it should somehow be read in the context of 1512 c as a whole. To me, though, it clearly reads as a necessary addition to c1, which doesn’t deal adequately with all the nefarious ways and means of obstruction. Barr describes the use of c2 as allowing an ‘unbounded interpretation’ of obstruction. But the law surely requires a definition of obstruction that captures the myriad ways that obstruction can occur – myriad but at the same time obvious to any well-reasoning witness.

Jacinta: Interesting – Mueller and Barr are friends of at least 30 years’ standing, which is a worry, and this makes me imagine, and perhaps it isn’t just imagination, that Mueller is writing up his report partly in refutation of Barr’s claims. That’s based on reading just three pages of Barr, but we’re often more miffed by the criticism of friends, and blokes are such competitive bulls.

Canto: Yes but you could be onto something there. Mueller dwells at length on 1512 c2 as the basis for his obstruction analysis, as well as on the three elements that must be fulfilled to show that obstruction has occurred – obstructive act, intent, and connection to an official proceeding – and towards the end of the report (Vol 2 III. Legal defences to the application of obstruction-of-justice statutes to the President), Mueller directly addresses the issue of 1512 c2, not in response to Barr, but in response to Trump’s personal counsel. These remarks summarise the Special Counsel’s position:

In analyzing counsel ‘s statutory arguments, we concluded that the President’s proposed interpretation of Section 1512(c)(2) is contrary to the litigating position of the Department of Justice and is not supported by principles of statutory construction.

Mueller Report Vol 2, p159

Jacinta: Yes I like the report’s succinctness, with the above summary being followed by a great deal of case law, constitutional argument and so forth. Of course we’re not conversant with all the precedents and the possible constitutional nuances, but we note that these arguments – which may well be directed at rebutting Barr – are detailed and cool, lacking the sense of outrage we find in Barr, regarding over-reach and unprecedented interpretations. And they do seem to confirm our amateur understanding that 1512 c2 is intended to cover acts other than the physical destruction of evidence – and those other acts would be an open-ended set.

Canto: Yes, Barr quibbles a lot on the term ‘otherwise’ in 1512 c2, and Mueller responds to that.

Jacinta: But if we move out from the detailed law into the world of basic ethics, we should be able to recognise that Barr’s position is nothing short of appalling. He tries to argue – and he did so in the senate hearing – that it’s not obstruction if the President ‘thinks’ that the proceeding is corrupt, and so wants to shut it down. So, according to Barr, Trump’s endless claims of a witch-hunt are sufficient justification for him to dismiss the Special Counsel! That’s laughable. I mean Trump would say that, wouldn’t he? Not that this is what Trump thinks. He knows full well that he’s a career criminal. It’s what every career criminal would say when brought to justice. Duh.

Written by stewart henderson

May 4, 2019 at 7:36 pm

the self and its brain: free will encore

leave a comment »


yeah, right

so long as, in certain regions, social asphyxia shall be possible – in other words, and from a yet more extended point of view, so long as ignorance and misery remain on earth, books like this cannot be useless.

Victor Hugo, author’s preface to Les Miserables

Listening to the Skeptics’ Guide podcast for the first time in a while, I was excited by the reporting on a discovery of great significance in North Dakota – a gigantic graveyard of prehistoric marine and other life forms precisely at the K-T boundary, some 3000 kms from where the asteroid struck. All indications are that the deaths of these creatures were instantaneous and synchronous, the first evidence of mass death at the K-T boundary. I felt I had to write about it, as a self-learning exercise if nothing else.

But then, as I listened to other reports and talking points in one of SGU’s most stimulating podcasts, I was hooked by something else, which I need to get out of the way first. It was a piece of research about the brain, or how people think about it, in particular when deciding court cases. When Steven Novella raised the ‘spectre’ of ‘my brain made me do it’ arguments, and the threat that this might pose to ‘free will’, I knew I had to respond, as this free will stuff keeps on bugging me. So the death of the dinosaurs will have to wait.

The more I’ve thought about this matter, the more I’ve wondered how people – including my earlier self – could imagine that ‘free will’ is compatible with a determinist universe (leaving aside quantum indeterminacy, which I don’t think is relevant to this issue). The best argument for this compatibility, or at least the one I used to use, is that, yes, every act we perform is determined, but the determining factors are so mind-bogglingly complex that it’s ‘as if’ we have free will, and besides, we’re ‘conscious’, we know what we’re doing, we watch ourselves deciding between one act and another, and so of course we could have done otherwise.

Yet I was never quite comfortable about this, and it was in fact the arguments of compatibilists like Dennett that made me think again. They tended to be very cavalier about ‘criminals’ who might try to get away with their crimes by using a determinist argument – not so much ‘my brain made me do it’ as ‘my background of disadvantage and violence made me do it’. Dennett and other philosophers struck me as irritatingly dismissive of this sort of argument, though their own arguments, which usually boiled down to ‘you can always choose to do otherwise’ seemed a little too pat to me. Dennett, I assumed, was, like most academics, a middle-class silver-spoon type who would never have any difficulty resisting, say, getting involved in an armed robbery, or even stealing sweets from the local deli. Others, many others, including many kids I grew up with, were not exactly of that ilk. And as Robert Sapolsky points out in his book Behave, and as the Dunedin longitudinal study tends very much to confirm, the socio-economic environment of our earliest years is largely, though of course not entirely, determinative.

Let’s just run though some of this. Class is real, and in a general sense it makes a big difference. To simplify, and to recall how ancient the differences are, I’ll just name two classes, the patricians and the plebs (or think upper/lower, over/under, haves/have-nots).

Various studies have shown that, by age five, the more plebby you are (on average):

  • the higher the basal glucocorticoid levels and/or the more reactive the glucocorticoid stress response
  • the thinner the frontal cortex and the lower its metabolism
  • the poorer the frontal function concerning working memory, emotion regulation , impulse control, and executive decision making.

All of this comes from Sapolsky, who cites all the research at the end of his book. I’ll do the same at the end of this post (which doesn’t mean I’ve analysed that research – I’m just a pleb after all. I’m happy to trust Sapolski). He goes on to say this:

moreover , to achieve equivalent frontal regulation, [plebeian] kids must activate more frontal cortex than do [patrician] kids. In addition, childhood poverty impairs maturation of the corpus collosum, a bundle of axonal fibres connecting the two hemispheres and integrating their function. This is so wrong foolishly pick a poor family to be born into, and by kindergarten, the odds of your succeeding at life’s marshmallow tests are already stacked against you.

Behave, pp195-6

Of course, this is just the sort of ‘social asphyxia’ Victor Hugo was at pains to highlight in his great work. You don’t need to be a neurologist to realise all this, but the research helps to hammer it home.

These class differences are also reflected in parenting styles (and of course I’m always talking in general terms here). Pleb parents and ‘developing world’ parents are more concerned to keep their kids alive and protected from the world, while patrician and ‘developed world’ kids are encouraged to explore. The patrician parent is more a teacher and facilitator, the plebeian parent is more like a prison guard. Sapolsky cites research into parenting styles in ‘three tribes’: wealthy and privileged; poorish but honest (blue collar); poor and crime-ridden. The poor neighbourhood’s parents emphasised ‘hard defensive individualism’ – don’t let anyone push you around, be tough. Parenting was authoritarian, as was also the case in the blue-collar neighbourhood, though the style there was characterised as ‘hard offensive individualism’ – you can get ahead if you work hard enough, maybe even graduate into the middle class. Respect for family authority was pushed in both these neighbourhoods. I don’t think I need to elaborate too much on what the patrician parenting (soft individualism) was like – more choice, more stimulation, better health. And of course, ‘real life’ people don’t fit neatly into these categories, there are an infinity of variants, but they’re all determining.

And here’s another quote from Sapolsky on research into gene/environment interactions.

Heritability of various aspects of cognitive development is very high (e.g. around 70% for IQ) in kids from [patrician] families but is only around 10% in [plebeian] kids. Thus patrician-ness allows the full range of genetic influences on cognition to flourish, whereas plebeian settings restrict them. In other words, genes are nearly irrelevant to cognitive development if you’re growing up in awful poverty – poverty’s adverse affects trump the genetics.

Behave, p249

Another example of the huge impact of environment/class, too often underplayed by ivory tower philosophers and the silver-spoon judiciary.

Sapolsky makes some interesting points, always research-based of course, about the broader environment we inhabit. Is the country we live in more communal or more individualistic? Is there high or low income inequality? Generally, cultures with high income inequality have less ‘social capital’, meaning levels of trust, reciprocity and cooperation. Such cultures/countries generally vote less often and join fewer clubs and mutual societies. Research into game-playing, a beloved tool of psychological research, shows that individuals from high inequality/low social capital countries show high levels of bullying and of anti-social punishment (punishing ‘overly’ generous players because they make other players look bad) during economic games. They tend, in fact, to punish the too-generous more than they punish actual cheaters (think Trump).

So the determining factors into who we are and why we make the decisions we do range from the genetic and hormonal to the broadly cultural. A couple have two kids. One just happens to be conventionally good-looking, the other not so much. Many aspects of their lives will be profoundly affected by this simple difference. One screams and cries almost every night for her first twelve months or so, for some reason (and there are reasons), the other is relatively placid over the same period. Again, whatever caused this difference will likely profoundly affect their life trajectories. I could go on ad nauseam about these ‘little’ differences and their lifelong effects, as well as the greater differences of culture, environment, social capital and the like. Our sense of consciousness gives us a feeling of control which is largely illusory.

It’s strange to me that Dr Novella seems troubled by ‘my brain made me do it’, arguments, because in a sense that is the correct, if trivial, argument to ‘justify’ all our actions. Our brains ‘make us’ walk, talk, eat, think and breathe. Brains R Us. And not even brains – octopuses are newly-recognised as problem-solvers and tool-users without even having brains in the usual sense – they have more of a decentralised nervous system, with nine mini-brains somehow co-ordinating when needed. So ‘my brain made me do it’ essentially means ‘I made me do it’, which takes us nowhere. What makes us do things are the factors shaping our brain processes, and they have nothing to do with ‘free will’, this strange, inexplicable phenomenon which supposedly lies outside these complex but powerfully determining factors but is compatible with it. To say that we can do otherwise is just saying – it’s not a proof of anything.

To be fair to Steve Novella and his band of rogues, they accept that this is an enormously complex issue, regarding individual responsibility, crime and punishment, culpability and the like. That’s why the free will issue isn’t just a philosophical game we’re playing. And lack of free will shouldn’t by any means be confused with fatalism. We can change or mitigate the factors that make us who we are in a huge variety of ways. More understanding of the factors that bring out the best in us, and fostering those factors, is what is urgently required.

just thought I’d chuck this in

Research articles and reading

Behave, Robert Sapolsky, Bodley Head, 2017

These are just a taster of the research articles and references used by Sapolsky re the above.

C Heim et al, ‘Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood’

R J Lee et al ‘CSF corticotrophin-releasing factor in personality disorder: relationship with self-reported parental care’

P McGowan et al, ‘Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse’

L Carpenter et al, ‘Cerebrospinal fluid corticotropin-releasing factor and perceived early life stress in depressed patients and healthy control subjects’

S Lupien et al, ‘Effects of stress throughout the lifespan on the brain, behaviour and cognition’

A Kusserow, ‘De-homogenising American individualism: socialising hard and soft individualism in Manhattan and Queens’

C Kobayashi et al ‘Cultural and linguistic influence on neural bases of ‘theory of mind”

S Kitayama & A Uskul, ‘Culture, mind and the brain: current evidence and future directions’.

etc etc etc

Written by stewart henderson

April 23, 2019 at 10:53 am