the new ussr illustrated

welcome to the Urbane Society for Skeptical Romantics, where pretentiousness is as common as muck

Trump’s downfall: the Russians keep on coming

leave a comment »

Yevgeniy Prigozhin, one of Putin’s mafioso thugs, and boss of Russian Bot Enterprises

Now to return to that fun topic, the dumping of Trump. Just to repeat, I’ve predicted that Trump will be ousted by year’s end, and I’m today feeling more confident in that prediction than ever, though my optimism meter has bounced about over the past few months.

The so-called speaking indictment recently released by special counsel Robert Mueller has put paid to Trump’s windy blather about ‘the fake Russia thing’. I suspect this was part of its intention. Being true patriots and all, the Mueller team want to prove to the American people once and for all that they’re under attack, contra Trump and his GOP supporters. They’ve indicted 13 Russian individuals and 3 companies on 8 counts, including conspiracy to defraud the US, conspiracy to commit wire and bank fraud, and several counts of aggravated identity theft, and they’ve told a detailed 37-page story to back it all up. And although the indictment doesn’t provide direct evidence of Russian government involvement, it states that funding was provided by Yevgeniy Prigozhin, a close ally and friend of Putin. The indictment is available online here and no doubt elsewhere.

Clearly this’ll stump Trump. The terms ruse, witch-hunt and fake news will no longer be so easily available to him. He himself tweeted shortly after the indictment was announced that because the conspiracy was first launched in 2014, he was somehow in the clear. Not only is this obviously false, the tweet unwittingly admits that the Russian conspiracy was real. I heard that he quickly regretted this, but oops, too late, because his possibly soon-to-be ex-national security advisor HR Puffnstuff McMaster has announced that the indictment provides incontrovertible evidence of the Russian conspiracy.

Rubs hand with glee

So it seems Trump wants to continue to undermine Mueller’s credible findings, and meanwhile American adults will want to know when sanctions will be imposed on Russia and what will be done to safeguard the November elections. These sanctions have already been voted for in Congress, but Trump hasn’t signed them into law. My guess is he’ll try to use the ‘argument’ that the Russian conspiracy had no impact on the 2016 election to do nothing. But that’s a pretty dangerous course to take.

The impact of the Russian conspiracy on the election is impossible to prove one way or another (you can’t read the minds of voters), and it isn’t a focus of the Mueller enquiry, which is entirely concerned with illegal activities. The fact that Trump isn’t at all concerned, as America’s head of state, that Russians engaged in illegal activities to meddle in US elections, should be, you’d think, of enormous concern to citizens of one of the most jingoistic nations on Earth. It should surely be his downfall, and a national scandal. But maybe I’m misreading things. After all, I was never able to believe that Trump could be elected in any civilised country.

Which of course raises the question – why is Trump so reluctant to sanction the Russians? Is it just because of his man-crush, or is it something deeper and more sinister? As many pundits are saying, we’ll get the answer to that by following the money, which is surely what Mueller is doing.

Having just read the full indictment – which really is a page-turner – I find it pretty compelling in its argument and wealth of evidence, and yet on listening to the mainstream cable news networks (CNN and MSNBC) over these last few months, I’m coming to realise that there’s a vast bulk of Americans, perhaps a third, who are so hooked into Fox News and its so obviously crude and distorted view of the US political scene that, it seems, nothing will move them to save themselves from their patently anti-democratic wannabe dictator. I get my occasional glimpses of Fox News and its tirades from the other networks, though I snatch a few direct looks myself. It really is appalling – hilarious in a death-black sort of way. If this number of people believe this sort of guff, and this ferociously, then ultimate action against Trump could lead to something like civil war, an outcome beyond the Russians’ wildest hopes.

One of the more grotesque claims now being made by the Fox Media-Trump cabal is that the Russian meddling was completely without impact, so why bother going after them? Better to go after the Mueller team, the FBI, the CIA and other ‘enemies of the nation’. Again, could this outcome be any better for the Russians?

I’ve said that it can’t be proved that the Russian bots and trolls influenced the outcome of the 2016 election. You can’t prove that any single voter had her vote decided by a particular rally or online article or image or whatever. That’s why the enquiry never intended to investigate this. It’s police enquiry, after all, so it’s investigating illegal methods and activities. But as to the results of these methods, we assert a few facts. The Russians’ principal focus was denigrating and debilitating the Clinton campaign – that’s surely why they ‘supported’ Sanders. Another major focus was supporting Trump (though occasionally muddying the waters) – that’s surely why they attacked the campaigns of Cruz and Rubio. Another salient fact is that the Trump election campaign was successful, confounding nearly all the pundits. The Russians would’ve had multiple reasons for supporting Trump, including some sort of quid pro quo, but one reason surely was that, since the Russians’ intentions were profoundly anti-democratic, as is shown by their efforts to disrupt democracies around the world, it would be screamingly obvious to promote the cause of perhaps the most profoundly anti-democratic candidate ever to contest a US presidential election.

It seems unthinkable that Trump wouldn’t act against the Russians, and it seems unthinkable that the American people would let him get away with this. Current reporting from Wired online tells us that pro-gun Russian bots are trolling over the Florida killings, as they did at the time of the Las Vegas massacre and on other occasions. It’s surely past time for the people to rise up against a leader who cares nothing about this and would obstruct efforts to act. Maybe they’re hoping that Mueller will do their job for them. I think, though, this needs more than just Mueller. The adults need to take over the asylum.

Advertisements

Written by stewart henderson

February 19, 2018 at 3:54 pm

Posted in Fox News

Tagged with , , , , ,

the latest summary of my battle for justice

leave a comment »

SA’s Supreme Court, a possible destination

I’ve written five posts recently on what I call ‘the big lie’ (see links below), and I might end up turning it into a book. It looks like I’ll have plenty of time on my hands to do so. My last post was on January 20, and since then there’s been no word from DCSI (SA’s Department for Communities and Social Inclusion) on the review of the decision, which officially commenced on October 31 2017 – 105 days ago. On the website for the Screening Unit of DCSI (or DCSE in my case), we’re told that a review will take 6-8 weeks or longer. Of course they don’t say how long longer is.

105 days is of course exactly 15 weeks. I have been suspended from work without pay since November 10. I’d been in my job as an educator in English for Academic Purposes for only four years. It was mostly part-time, and TESOL is probably the most lowly-paid job in teaching, which is already well-recognised as an under-paid profession. However it’s the best job I’ve ever had, and I miss my students – a lot.

I point all this out because I want to make it clear that I lack the financial resources to hire a lawyer to help me clear my name in a civil or criminal court, even if there were any avenue for me to do so, and at this stage it appears not.

However, if I can find an avenue, I will represent myself.

So, two weeks ago I wrote an email to the people responsible for my review. I used the same email address they gave me for sending any further information that might assist my case – personal/professional references or any other documents I might have unearthed. My email was essentially a begging letter about the personal and financial stress I was going through due to their delayed decision. I received no response, so last week I wrote a letter of complaint to DCSI about the delay. I received no response from that either, so yesterday I filed an official complaint about the matter to the SA Ombudsman, whose office looks into official complaints about state government departments, inter alia. After managing finally to fill out correctly their not-so-user-friendly form, I was told they would respond within a fortnight.

So that’s where things stand at present, but I worry that the longer it takes for the Screening Unit to decide for or against me, the less likely it will be that I’ll be reinstated in my job, whatever the outcome.

Meanwhile, as well as trying to turn my mind to other things, and to blog about them, I’ve been looking online for possibilities for clearing my name, taking action against wrongful arrest or wrongful prosecution, and so forth. And I’ve come up pretty well empty. DCSI provided me with a pamphlet on Procedural Fairness as part of their request for further information back in April last year. Under ‘further avenues of appeal’ it states: ‘You may also seek a judicial review of  an administrative decision in the Supreme Court’. If the decision is against me, I will do that, but that won’t be enough, though it may be that the Supreme Court, in reviewing the case, will accept that a nolle prosequi decision was unfair in light of the complete absence of evidence presented. In which case, the DPP and SAPOL may have a case to answer, a case that I would be keen to pursue.

The problem with this, though, is that first and foremost I want my job back, and I’m getting on for 62 years of age. How long would all this take? And it’s also clear that seeking redress for false accusations, and even for unjust convictions leading to deprivation of liberty, is no easy matter in Australia. My online research on this stuff just leaves me feeling depressed. It should be said that the case of Roseanne Beckett, linked to above, ended well for her after 26 years (and the injustice she suffered completely dwarfs my own, to put it mildly).

My concern in fighting this case is:

First, to find out if the accuser is still sticking by his accusation.

Second, to determine how the police can justify not visiting the so-called scene of the crime until after the case had been transferred to a higher court (thus necessitating the production of evidence, or at least verification of the boy’s story).

Third, how can the police justify arresting me without evidence? Their own justification is stated tersely on their charge sheet:

‘Accused arrested to ensure appearance and due to the serious nature of the offence’.

So, two reasons are given. To take the second one first – due to the serious nature of the offence. Is it fair to arrest someone solely on the basis of a claim being serious or extreme? Think of the term used in science: extraordinary claims require extraordinary evidence. Prima facie, I can’t see how you can justify arresting someone for a crime as serious as rape, with all the opprobrium understandably attached to it, and the damage to the accused’s reputation, without any evidence whatever beyond the story of the accuser. To do so would, IMHO, lack due diligence to an extreme degree. So now to the first reason – to ensure my appearance – that is, to ensure I wouldn’t ‘do a runner’. However, this makes no sense. For many weeks before my arrest I was aware that a serious allegation had been made against me. I also made the police aware of this because, after weeks of being kept in the dark, I made an official complaint to the Police Complaints Authority about my situation. It was Anglicare who informed me, by phone, that a serious allegation had been made, immediately after they had manoeuvred my new foster-kid out of the house on a false pretext. Clearly, the police had contacted Anglicare about the allegation against me, and they (the police) would have ensured that no other minor was in my care until this matter was investigated. So the police knew that I knew something was afoot, and they would have known, or should have known, from the Police Complaints Authority matter, that I wasn’t going anywhere. In short, neither of the reasons given by the police for my arrest bear close scrutiny.

Fourth, how the DPP can justify proceeding, when their mission statement is clear that no case will be prosecuted unless there is a reasonable chance of conviction.

But at first glance there seems no avenue for fighting the whole case, so I would have to begin by fighting the DCSI’s decision. This fight would mean questioning why the screening unit looks upon nolle prosequi so negatively. But here I must say that my researches have uncovered something which I may have written about before, forgive me. That is, that there are three possible way in which the prosecution could be unsuccessful, not two, as I’d previously thought.  They are: a finding of not guilty (i.e. acquittal), which would entail an expensive full trial, which was never going to happen; a dismissal before arraignment, in which the DPP recognises it doesn’t have a case; and a nolle prosequi dismissal after arraignment, because the DPP has somehow convinced the magistrate that the defendant has a case to answer. It is because the case was sent to a higher court at arraignment (or did the arraignment actually take place in the higher court? I’m not sure) that I’m in the position I’m now in, without a police clearance, and in danger of never being able to teach again, even in a voluntary capacity, at least not in a community centre, where these more stringent police clearances are now mandatory.

In any case, it’s time now to act, I can’t keep waiting, stuck like a rabbit in the headlights. I’ve been too passive in this case. I need to take it to the Supreme Court, if possible – regardless of the eventual decision of DCSI.

https://ussromantics.com/2017/11/11/the-battle-for-justice-part-1-some-background-to-the-case/

https://ussromantics.com/2017/11/13/the-battle-for-justice-part-2-the-problem-with-nolle-prosequi/

https://ussromantics.com/2017/11/14/the-battle-for-justice-part-3-is-there-any-way-to-clear-your-name/

https://ussromantics.com/2017/11/21/the-battle-for-justice-an-update-the-problem-with-documents/

https://ussromantics.com/2018/01/20/police-procedures-the-dpp-and-subtle-corruption/

 

Trump downfall update. The latest indictments of Russians obviously undercuts Trump’s claims about the ‘Russian hoax’ as well as the ‘tattered FBI’ and might have an affect on the Trumpets. They should have an undermining effect on the Congress Trumpets in particular – Nunes, Collins, Cotton and co. If, after this, the GOP Congress continues to deny or do nothing about Russian conspiracy to influence elections, including the coming mid-terms, isn’t this obstruction of some sort? Or some sort of passive collusion? It certainly is an outrage. Pressure should next be brought to bear on sanctions, and that would mean more pressure on Trump.

Written by stewart henderson

February 17, 2018 at 11:32 am

the continuing story of South Australia’s energy solutions

leave a comment »

In a very smart pre-election move, our state Premier Jay Weatherill has announced that there’s a trial under way to install Tesla batteries with solar panels on over 1,000 SA Housing Trust homes. The ultimate, rather ambitious aim, is to roll this out to 50,000 SA homes, thus creating a 250MW power plant, in essence. And not to be outdone, the opposition has engaged in a bit of commendable me-tooism, with a similar plan, actually announced last October. This in spite of the conservative Feds deriding SA labor’s ‘reckless experiments’ in renewables.

Initially the plan would be offered to public housing properties – which interests me, as a person who’s just left a solarised housing association property for one without solar. I’m in community housing, a subset of public housing. Such a ‘virtual’ power plant will, I think, make consumers more aware of energy resources and consumption. It’s a bit like owning your own bit of land instead of renting it. And it will also bring down electricity prices for those consumers.

This is a really important and exciting development, adding to and in many ways eclipsing other recently announced developments in SA, as written about previously. It will be, for a time at least, the world’s biggest virtual power plant, lending further stability to the grid. It’s also a welcome break for public housing tenants, among the most affected by rising power bills (though we’ll have to wait and see if prices do actually come down as a result of all this activity).

And the announcements and plans keep coming, with another big battery – our fourth – to be constructed in the mid-north, near Snowtown. The 21MW/26MWh battery will be built alongside a 44MW solar farm in the area (next to the big wind farm).

 

South Australia’s wind farms

Now, as someone not hugely well-versed in the renewable energy field and the energy market in general, I rely on various websites, journalists and pundits to keep me honest, and to help me make sense of weird websites such as this one, the apparent aim of which is to reveal all climate scientists as delusionary or fraudsters and all renewable energy as damaging or wasteful. Should they (these websites) be tackled or ignored? As a person concerned about the best use of energy, I think probably the latter. Anyway, one journalist always worth following is Giles Parkinson, who writes for Renew Economy, inter alia. In this article, Parkinson focuses on FCAS (frequency control and ancillary services), a set of network services overseen by AEMO, the Australian Energy Market Operator. According to Parkinson and other experts, the provision of these services has been a massive revenue source for an Australian ‘gas cartel’, which has been rorting the system at the expense of consumers, to the tune of many thousands of dollars. Enter the big Tesla battery , officially known as the Hornsdale Power Reserve (HPR), and the situation has changed drastically, to the benefit of all:

Rather than jumping up to prices of around $11,500 and $14,000/MW, the bidding of the Tesla big battery – and, in a major new development, the adjoining Hornsdale wind farm – helped (after an initial spike) to keep them at around $270/MW.

This saved several million dollars in FCAS charges (which are paid by other generators and big energy users) in a single day.

And that’s not the only impact. According to state government’s advisor, Frontier Economics, the average price of FCAS fell by around 75 per cent in December from the same month the previous year. Market players are delighted, and consumers should be too, because they will ultimately benefit. (Parkinson)

As experts are pointing out, the HPR is largely misconceived as an emergency stop-gap supplier for the whole state. It has other, more significant uses, which are proving invaluable. Its effect on FCAS, for example, and its ultra-ultra-quick responses to outages at major coal-fired generators outside of the state, and ‘its smoothing of wind output and trading in the wholesale market’. The key to its success, apparently, is its speed of effect – the ability to switch on or off in an instant.

Parkinson’s latest article is about another SA govt announcement – Australia’s first renewable-hydrogen electrolyser plant at Port Lincoln.

I’ve no idea what that means, but I’m about to find out – a little bit. I do know that once-hyped hydrogen hasn’t been receiving so much support lately as a fuel – though I don’t even understand how it works as a fuel. Anyway, this plant will be ten times bigger than one planned for the ACT as part of its push to have its electricity provided entirely by renewables. It’s called ‘green hydrogen’, and the set-up will include a 10MW hydrogen-fired gas turbine (the world’s largest) driven by local solar and wind power, and a 5MW hydrogen fuel cell. Parkinson doesn’t describe the underlying technology, so I’ll have a go.

It’s all about electrolysis, the production of hydrogen from H2O by the introduction of an electric current. Much of what follows comes from a 2015 puff piece of sorts from the German company Siemens. It argues, like many, that there’s no universal solution for electrical storage, and, like maybe not so many, that large-scale storage can only be addressed by pumped hydro, compressed air (CAES) and chemical storage media such as hydrogen and methane. Then it proceeds to pour cold water on hydro – ‘the potential to extend its current capacity is very limited’ – and on CAES ‘ – ‘has limitations on operational flexibility and capacity. I know nothing about CAES, but they’re probably right about hydro. Here’s their illustration of the process they have in mind, from generation to application.

Clearly the author of this document is being highly optimistic about the role of hydrogen in end-use applications. Don’t see too many hydrogen cars in the offing, though the Port Lincoln facility, it’s hoped, will produce hydrogen ‘that can be used to power fuel cell vehicles, make ammonia, generate electricity in a turbine or fuel cell, supply industry, or to export around the world’.

So how does electrolysis (of water) actually work? The answer, of course, is this:

2 H2O(l) → 2 H2(g) + O2(g); E0 = +1.229 V

Need I say more? On the right of the equation, E0 = +1.229 V, which basically means it takes 1.23 volts to split water. As shown above, Siemens is using PEM (Proton Exchange Membrane, or Polymer Electrolyte Membrane) electrolysis, though alkaline water electrolysis is another effective method. Not sure which which method is being used here.

In any case, it seems to be an approved and robust technology, and it will add to the variety of ‘disruptive’ and innovative plans and processes that are creating more regionalised networks throughout the state. And it gives us all incentives to learn more about how energy can be produced, stored and utilised.

Written by stewart henderson

February 14, 2018 at 4:50 pm

How do trees transport water such long distances? Part 2: the mechanism remains a mystery (to me)

leave a comment »

and I still haven’t found what I’m looking for…

So scientists have learned a lot, though not everything, about water’s travels from soil to leaf in a plant or tree. It’s a fascinating story, and I’m keen to learn more. But the real mystery for me is about energy. As the excellent Nature article, upon which I’m mostly relying, points out, animals have a pump-based circulatory system to distribute nutrients, oxygen and so forth, but plants are another matter, or another form of organised matter.

I actually posed two questions in my last post. How do plants – and I think I should specify trees here, because the massive distance between the soil and their top leaves makes the problem more dramatic – move water such large distances, and how do they know they have to transport that water and how much water to transport?

So let’s look at the Nature Education explanation:

The bulk of water absorbed and transported through plants is moved by negative pressure generated by the evaporation of water from the leaves (i.e., transpiration) — this process is commonly referred to as the Cohesion-Tension (C-T) mechanism. This system is able to function because water is “cohesive” — it sticks to itself through forces generated by hydrogen bonding. These hydrogen bonds allow water columns in the plant to sustain substantial tension (up to 30 MPa when water is contained in the minute capillaries found in plants), and helps explain how water can be transported to tree canopies 100 m above the soil surface.

Notice how we’re again returning to the explanations questioned by Wohlleben – transpiration and capillary action. But we’re introduced to something new – the C-T mechanism. The thesis is that water’s cohesiveness through hydrogen bonding creates a tension (the tension that makes for capillary action) that enables water to be shifted up to 100 metres – all because of the minuteness of capillaries found in plants. And trees? Somehow, I just can’t see it. Perhaps the key is in the phrase ‘helps explain’.  There must surely be more to this. The thesis also mentions ‘negative pressure’ generated by transpiration. This is the signalling I wrote about before. Somehow the plant’s chemistry recognises that there’s an imbalance, and of course this happens in all living things, regardless whether they have a complex nervous system. So maybe there’s no need to worry about ‘knowing’. All living organisms respond to their ever-changing environment by altering their internal chemistry, by opening or closing barriers, by selectively adding or subtracting nutrients, and there are unknowns everywhere about precisely how they do that. It’s a kind of organised chemistry that seems like everyday magic from the outside, whether we’re focusing on a beech tree or our own intestines.

The C-T mechanism is only new to me I should add. It can actually be traced back to 1727 and a book by Stephen Hales, in which he pointed out that without what he called perspiration the water in a plant would stagnate, and that it was also required to allow for the capillary movement of water, because ‘the sap-vessels are so curiously adapted by their exceeding fineness, to raise [water] to great heights, in a reciprocal proportion to their very minute diameters’. But this ‘reciprocal proportion’, according to Wohlleben, as quoted in the last post, can only account for a maximum of 3 feet of upward force in ‘even the narrowest of vessels’.

The water transport system, referred to in the last post as the water potential difference or gradient, also has another name, the Soil Plant Atmosphere Continuum (SPAC). I also mentioned something about an ‘apoplastic pathway’. Water enters the tree by the roots, which are divided and subdivided much like branches and twigs above-ground, with the thinnest examples being the fine root hairs. Water enters through the semi-permeable cell walls by osmosis. Cell-to-cell osmosis carries the water deeper into the root system, and thence into an apoplastic pathway. According to this video, this pathway provides an uninterrupted flow of water (no cell wall barriers) which allows a mass flow ‘due to the adhesive and cohesive properties of water’. This is the cohesion-tension theory again. Apparently, due to evaporation, a tension is created in the apoplast’s continuous stream, leading to this ‘mass flow’.

This makes absolutely no sense to me. What I’m so far discovering is that it’s pretty hard to start from scratch as an amateur/dilettante and get my head around all this stuff, and in my reading and video-watching I’ve yet to find a straightforward answer to the how of long distance, fast transport of water in plants/trees – there probably isn’t one.

I’ll try again after a diet of videos – so far I’ve found a large number of videos in Indian English, and their accents defeat me, I’m sad to say. No transcripts available. Meanwhile, I’ve compiled a little glossary (from various sources) to help myself…

apoplast – within plants, the space outside the plasma membrane within which material can diffuse freely. It is interrupted by the Casparian strip in roots, by air spaces between plant cells and by the plant cuticle.

Casparian stripa band of cell wall material deposited in the radial and transverse walls of the endodermis, which is chemically different from the rest of the cell wall – the cell wall being made of lignin and without suberin – whereas the Casparian strip is made of suberin and sometimes lignin.

cortical cells – in plants, cells of the cortex, the outer layer of the stem or root of a plant, bounded on either side by the epidermis (outer) and the endodermis (inner).

exudation – An exudate is a fluid emitted by an organism through pores or a wound, a process known as exuding.

guttation – water loss, when water or sap collects (at times of low evaporation, dawn & dusk), at tips of grass, herbs (not to be confused with dew, caused by condensation).

hydrostatic pressure – the pressure exerted by a fluid at equilibrium at a given point within the fluid, due to the force of gravity. This increases in proportion to depth measured from the surface because of the increasing weight of fluid exerting downward force from above.

lignin – a class of complex organic polymers that form important structural materials in the support tissues of vascular plants and some algae. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity and do not rot easily.

osmosis – the movement of water from an area of high to low concentration through a semi-permeable membrane. ‘Pumps’ in the cell membrane transport the specific ions into the cell which means water moves in by osmosis thus maintaining hydrostatic pressure.

phloem – the living tissue that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, to parts of the plant where needed. This transport process is called translocation.

plasmodesmata – narrow threads of cytoplasm that pass through the cell walls of adjacent plant cells and allow communication between them.

root pressure – the transverse osmotic pressure within the cells of a root system that causes sap to rise through a plant stem to the leaves. Root pressure occurs in the xylem of some vascular plants when the soil moisture level is high either at night or when transpiration is low during the day

sap – a fluid transported in xylem cells (vessel elements or tracheids) or phloem sieve tube elements of a plant. These cells transport water and nutrients throughout the plant.

suberin – an inert impermeable waxy substance present in the cell walls of corky tissues. Its main function is as a barrier to movement of water and solutes.

symplast – the network of cytoplasm of all cells interconnected by plasmodesmata. The movement of water occurs from one cell to another through plasmodesmata

tracheid – a type of water-conducting cell in the xylem which lacks perforations in the cell wall.

vascular (plants) – also known as tracheophytes and also higher plants, form a large group of plants (over 300,000 accepted known species) that are defined as those land plants that have lignified tissues (the xylem) for conducting water and minerals throughout the plant.

xylem – one of the two types of transport tissue in vascular plants, phloem being the other. The basic function of xylem is to transport water from roots to shoots and leaves, but it also transports some nutrients.

 

On the Trump’s downfall. What a memo. One wonders if the DoJ is running out of patience with the wannabe dictator and his imbecilities, which may bring things to a head sooner rather than later. But those in the know say that Mueller is always thorough and unlikely to be distracted, so I shouldn’t project my own impatience onto him. Dog give me strength to suffer the horrorshow for a while longer.

 

Written by stewart henderson

February 5, 2018 at 3:48 pm

Posted in biology, botany

Tagged with , , , , ,

How do plants transport water? Part 1: xylem, transpiration and a mysterious water potential difference

leave a comment »

roots, xylem, upward flow, transpiration – but how does it work? Find out in the next thrilling episode, maybe.
Stolen from Nature Education, with apologies

This post could fit well in the ‘How Stuff Works’ series, always a useful resource, but I doubt if they’ve done a piece on today’s subject. Maybe I’ll check later.

I’ve been reading a book called The hidden life of trees, by Peter Wohlleben, a Chrissy present from a good friend. One of its shortest chapters is titled ‘The mysteries of moving water’. The reason for its brevity is essentially that there’s as yet no solution to the mystery of how water gets from the soil to the leaves of a tree, or any plant for that matter. At least, according to Wohlleben.

This strikes me as amazing, if true. After all, it’s a simple, everyday scenario for any home gardener. You notice on a hot summer day that the leaves of your capsicum plant are wilting. You apply a two-litre dose of H2O to the base, et voilà, within an hour or two (I don’t know, I’ve never timed it), those leaves have become as turgid as much of my writing. And it just may cross your mind that it’s pretty miraculous how plants can do that. But if it’s true that we don’t know how plants manage such an everyday miracle, surely working it out is Nobel Prizeworthy for any ambitious team of botanico-chemists out there, or whatever.

Of course it’s much more likely that botanists have been trying to solve this mystery for decades – isn’t it? But before I look into it, here’s what Wohlleben says in his book:

…water transport is a relatively simple phenomenon to research – simpler at any rate than investigating whether trees feel pain or how they communicate with one another – and because it appears so uninteresting and obvious, university professors have been offering simplistic explanations for decades… Here are the accepted answers: capillary action and transpiration.

Upon reading this I tried to recall what I knew of these terms. With capillary action I drew a blank, though I feel sure I knew about it once. Transpiration, though, was clear enough: it was like perspiration, the evaporation of water from the leaves, rather than the skin (or is perspiration the secretion of water through the pores rather than the evaporation? Later). So transpiration is only about the movement of water from the surface of a leaf to the atmosphere by means of solar energy; it surely has nothing to do with movement through the stem or trunk, though the loss of water from the leaves is presumably a signal to the plant to draw up more water from the earth, but how can we talk of signals when a plant has no brain or command centre to receive them? And how can water be ‘drawn up’ when it has no muscle power or other obvious energy source?

As to capillary action, Wohlleben explains:

Capillary action is what makes the surface of your coffee stand a few fractions of an inch higher than the edge of your cup. Without this force, the surface of the liquid would be completely flat. The narrower the vessel, the higher the liquid can rise against gravity. And the vessels that transport water in deciduous trees are very narrow indeed: they measure barely 0.02 inches across. Conifers restrict the diameter of their vessels even more, to 0.0008 inches. Narrow vessels, however, are not enough to explain how water reaches the crown of trees that are more than 300 feet tall. In even the narrowest of vessels, there is only enough force to account for a rise of 3 feet at most.

Needless to say, plenty of research has been done on the subject of water transport in plants, but I have to agree with Wohlleben that there’s a lot that’s missing. The key to the process is a material called xylem, a structure made from hollow, dead, reinforced cells. Here’s how a BBC science site tries to explain it:

Transpiration explains how water moves up the plant against gravity in tubes made of dead xylem cells without the use of a pump.

Water on the surface of spongy and palisade cells (inside the leaf) evaporates and then diffuses out of the leaf. This is called transpiration. More water is drawn out of the xylem cells inside the leaf to replace what’s lost.

As the xylem cells make a continuous tube from the leaf, down the stem to the roots, this acts like a drinking straw, producing a flow of water and dissolved minerals from roots to leaves.

Water doesn’t flow upwards, however. It has to be pumped up, or sucked, as we do when we apply our lips and energy to a straw. The BBC also describes the whole process as transpiration, which just seems wrong to me. Obviously much transpires here, but it isn’t just transpiration. What?

What obviously needs explaining is where the energy comes from to draw the water up against gravity, and how the plant ‘knows’ that water needs replenishing.

A more comprehensive, and richly referenced, attempt at an explanation is provided by Nature, the well-known science magazine, on one of its educational websites. There we’re told that ‘plants retain less than 5% of the water absorbed by roots for cell expansion and plant growth’. This is fascinating, as is the reason for the lack of retention – photosynthesis. Water is lost to the atmosphere from the leaves’ stomata, which are like our pores. These stomata are used to absorb CO2 for the photosynthesis of sugars, but their openness to CO2 increases the transpiration rate, so there’s a tricky balance between the two – water loss versus CO2 and sugar gain.

The xylem mentioned above doesn’t reach down all the way to the base of the root system. First the water must pass through several cell layers that act as a filtration system. But how does it do this? What is the force being applied and where does it come from? The Nature article gives this complex explanation:

The relative ease with which water moves through a part of the plant is expressed quantitatively using the following equation:

Flow = Δψ / R,

which is analogous to electron flow in an electrical circuit described by Ohm’s law equation:

i = V / R,

where R is the resistance, i is the current or flow of electrons, and V is the voltage. In the plant system, V is equivalent to the water potential difference driving flow (Δψ) and i is equivalent to the flow of water through/across a plant segment. Using these plant equivalents, the Ohm’s law analogy can be used to quantify the hydraulic conductance (i.e., the inverse of hydraulic R) of individual segments (i.e., roots, stems, leaves) or the whole plant (from soil to atmosphere).

Got that? I may be wrong, but isn’t this just an analogy? Don’t analogies tend to break down with a little bit of analytic pressure? The idea of hydraulic conductance is clearly drawn from electrical conductance, but electrical conductance relies on a power source, doesn’t it? What is the plant’s power source? Yes, I can see that certain parts of the plant have a greater resistance to the water’s mostly upward movement than others, and that this resistance is measurable by examining the time it takes for water to pass through the different parts with their particular structure and chemistry, but it says nothing about the energy source. In Ohm’s law, V, voltage is the amount of power, which comes from a source of that power, such as a battery. In the above analogy, Δψ is described as the water potential difference that drives flow. I’m possibly being dumb, but how does that happen? What’s meant by ‘water potential difference’?

The Nature article, I must say, is very good at telling us about the materials and obstacles negotiated by water molecules on their journey. First they pass through the root’s epidermis, then the cortex and the endodermis and then on to the xylem. They travel by an apoplastic pathway (more of that next time), or else a cell-to-cell pathway (C-C), and the role of ‘water-specific protein channels embedded in cell membranes (i.e., aquaporins)’ is mentioned, but this role is apparently still much of a mystery. Anyway, the xylem continues into the petiole, to which the leaves are attached, and then into the mid-rib, the main central vein of the leaf. From there the water passes into the smaller branching veins of a dicot leaf, which also contain tracheids – elongated xylem cells for the transport of water and mineral salts. It’s from this network of veins that transpiration takes place.

So I’m learning a lot, but the ‘water potential gradient’ and how it pulls or pushes water upwards, that’s still very much a mystery to me. But there’s more to come.

References

https://www.nature.com/scitable/knowledge/library/water-uptake-and-transport-in-vascular-plants-103016037

http://www.bbc.co.uk/schools/gcsebitesize/science/add_gateway_pre_2011/greenworld/planttransportrev1.shtml

Peter Wohlleben, The hidden life of trees, Collins 2017

 

Ok, the usual update on Trump’s downfall. Some are saying that the Mueller enquiry is winding up (and I’m not talking about GOP hardheads), but I’m hoping not, because I reckon the financial stuff alone will take years to wade through properly. In the meantime though, I’m hoping that more really dramatic developments occur to light a fire under Trump’s capacious backside, sooner rather than later. The latest news is that the Mueller team are looking at the cover-up re Trump Jr’s meeting with Russian agents. So maybe the cover-ups and the endless obstructing will lead to some justice action soon, while the ‘follow the money’ aspect will continue for some time, and hopefully do the really lasting and permanent damage to the Trump horrorshow.

 

Written by stewart henderson

February 1, 2018 at 11:13 pm

modern humans are getting less modern, in unexpected places

with one comment

Taken from the website of Science magazine

In recent years we’ve been almost overwhelmed by paleontological discoveries (and re-analyses of earlier discoveries), from giant worm jaws to a new subclass of cephalopod to a new semi-aquatic non-avian dinosaur to the oldest fossils yet found of that strange species, Homo sapiens. 

I’ve decided to focus on the last example, for now. Homo sapiens fossils discovered at Jebel Irhoud in Morocco in the sixties, and long thought to have been some 40,000 years old, came under increasing ‘suspicion’ from palaeontologists, beginning in the eighties, due to various curious anomalies. More intensive searching at the Jebel Irhoud site recently has led to a wealth of discoveries, ‘including skull bones from five [human-like, though with a different brain-case, especially at the back] individuals who all died around the same time’. And thanks to the new thermoluminescence dating technique, which is applied to heated or burned substances (it’s a measure of accumulated radiation), a date of 300,000 years was calculated for the tools found near the fossils, and by association for the fossils themselves. This makes them over 100,000 years older than those found in Ethiopia. The Ethiopian fossil discoveries gave rise to the idea that ‘modern’ humans began life in a small region of East-Central Africa and gradually spread, but the revelation about the Moroccan fossils means a revision, or overturning, of that hypothesis.

You’ll notice I’ve put modern in skeptical quotes. It seems to me nobody will agree on what a modern human really is, or whether it’s decided entirely on anatomical or physiological features. If you found yourself suddenly transported to the days of Sargon and the Akkadian civilisation, only 4,500 years ago, you probably wouldn’t have the impression you were living among modern humans – depending on how prepared you were for the culture shock. Of course, paleontologists would have different measures for modernity – brain size, skeletal features and such – but these are necessarily imprecise given individual variation and the sparsity of really good fossils. And there’s also the matter of incremental, barely discernible change. For example, our 300,000-year-old Jebel Irhoud specimens are, perhaps, the oldest known modern human specimens, but it would be silly to argue that their parents weren’t just as modern – and what of their grandparents? And in this way we can go back another 10,000 years, or maybe 50,000, without seeing much difference. This has always been the most difficult thing to get my head around, not only for H sapiens but for any species. When does Australopithecus afarensis start/stop being Australopithecus afarensis? When did a chimp distinguish herself from a bonobo, and when did they both get differentiated from their predecessor? Are we taking hard and fast taxonomy too seriously? Maybe I’ll return to that some time…

Meanwhile, another recently revealed discovery has added to the ‘out of Africa’ confusion, which many thought was becoming less confused, with something like a consensus that H sapiens  emerged from Africa between 70 and 100 thousand years ago and dispersed globally, with the oldest Australian human possibly dating back as far as 65,000 years.

The discovery of a human jawbone and teeth in Israel that date back nearly 200,000 years has messed up that simplifying story, and it’s only one of a number of finds that are making the experts get confused – and excited – again. The jawbone find, combined with sophisticated tools and weaponry, is solid evidence of H sapiens coming out of Africa much earlier, and perhaps on an irregular basis depending on climatic conditions and resources. Human teeth found in China, and human fossils in Sumatra, dating to at least 70,000 years ago, tend to confirm this hypothesis. Other fossil discoveries in Israel are complicating the picture. The Eastern Mediterranean seems to have been a crossroads where various early human species may have interacted.

These new discoveries appear to confound the genetic evidence that we’re all related to an out-of-Africa population that emerged well under 100,000 years ago, but it seems these early populations died out or returned to Africa.

Yet there are so many mysteries still to solve. What about the strange Denisovans? We have so little fossil evidence, yet enough to map almost the entire nuclear and mitochondrial genome – a testament to modern technology. Analysis of their mtDNA suggests that they migrated out of Africa much earlier than the modern humans above-mentioned, but later than H erectus. They apparently branched off from the human line 600,000 years ago, and from Neanderthals about 400,000 years ago. The fullness and fascinating richness of the Wikipedia article on the Denisovans, garnered from such minute fossil evidence, is a source of great wonder to me. The specimens (of four distinct Denisovans) were well preserved due to the icy temperatures in the Siberian cave, near the Mongolian-Chinese border, where they were found. The finger bone, dated to about 40,000 years BP (Before Present, a new designation to me, and a welcome one), has yielded both mitochondrial and nuclear DNA, which has shown the Denisovans to be distinct from both Neanderthals and modern humans, and that they share a common ancestor with Neanderthals. Other excavations of the cave show that it was inhabited at least 125,000 years ago. mtDNA analysis has apparently revealed that the three, H sapiens, Denisovans and Neanderthals, shared a common ancestor about 1 million years ago. I’m writing these facts, if they are facts, as I find them, while wondering what they mean, and especially how the evolutionary tree can be visualised, but it’s pretty difficult, especially when you consider interbreeding. Looks like I’ll have to write and do the research for half a dozen posts before I start to get it straight in my own head. Anyway, here’s one interesting chart I’ve found.

 

There are clearly more mystery hominids to be found, to fill out the complicating picture. And of course I’ve mentioned the genetics and genomics only in passing, but again it’s astonishing what they can find these days by comparing these genes with what we know of some modern human populations. For example, studies of the Denisovans genome found ‘a region around the EPAS1 gene that assists with adaptation to low oxygen levels at high altitude’, already known from analysis of modern Tibetan genes.

Hoping to keep myself up to date with all this, if I don’t get too distracted by the zillions of other fields of enquiry worth keeping up with…

References

https://www.theguardian.com/science/2018/jan/25/oldest-known-human-fossil-outside-africa-discovered-in-israel

https://www.theatlantic.com/science/archive/2017/06/the-oldest-known-human-fossils-have-been-found-in-an-unusual-place/529452/

https://en.wikipedia.org/wiki/Denisovan

 

All the excitation about Trump having tried to sack Mueller annoys me because it makes me – well, too excited. I have to learn to be patient. The Mueller enquiry will end when it does, and it’s sure to end dramatically. Still, I hunger for another indictment, or equivalent headline. One point worth worrying about though, is what happens when Trump goes? The whole administration should go, but that’s not what happens in the US. No snap elections, no double dissolution. Another weakness of the Presidential system, it seems to me. In the US, you vote for a personality, and that personality gets to build a team around him (it’s always been a bloke), whereas in most advanced western nations, the country’s leader has risen through the ranks of the team, much like the captain of a soccer team, who’s given the captain’s armband, not because she’s the best player – though she quite often is – but because she’s the most inspiring leader. If that captain falls afoul of the law, another competent team member can take on the job. In the case of the US Presidency, the team is tainted by the captain’s failings because he’s personally chosen the lot of them – in this case largely because of their political ignorance, which he regards as a positive.

 

Written by stewart henderson

January 29, 2018 at 10:31 pm

the battle for and against electric vehicles in Australia, among other things

leave a comment »

Toyota Camry hybrid – hybrids are way outselling pure EVs here, probably due to range anxiety and lack of infrastructure and other support

I’ve probably not been paying sufficient attention, but I’ve just learned that the Federal Energy minister, Josh Frydenberg, is advocating, against the naysayers, for government support to the EV industry. An article today (Jan 22) in The Australian has Frydenberg waxing lyrical about the future of EVs, as possibly being to the transport sector ‘what the iPhone has been to the communication sector’. It’s a battle the future-believers will obviously win. A spokesman for the naysayers, federal Liberal Party MP and AGW-denier Craig Kelly, was just on the gogglebox, mocking the idea of an EV plant in Elizabeth here in South Australia (the town I grew up in), sited in the recently abandoned GM Holden plant. His brilliantly incisive view was that since Holdens failed, a future EV plant was sure to fail too. In other words, Australians weren’t up to making cars, improving their practice, learning from international developments and so forth. Not exactly an Elon Musk attitude.

The electric vehicles for Elizabeth idea is being mooted by the British billionaire Sanjeev Gupta, the ‘man of steel’ with big ideas for Whyalla’s steelworks. Gupta has apparently become something of a specialist in corporates rescues, and he has plans for one of the biggest renewables plants in Australia – solar and storage – at Whyalla. His electric vehicle plans are obviously very preliminary at this stage.

Critics are arguing that EVs are no greener than conventional vehicles. Clearly their arguments are based on the dirty coal that currently produces most of the electricity in the Eastern states. Of course this is a problem, but of course there is a solution, which is gradually being implemented. Kiata wind farm in Western Victoria is one of many small-to medium-scale projects popping up in the Eastern states. Victoria’s Minister for Energy, Environment and Climate Change (an impressive mouthful) Lily D’Ambrosio says ‘we’re making Victoria the national leader in renewable energy’. Them’s fightin words to we South Aussies, but we’re not too worried, we’re way ahead at the moment. So clearly the EV revolution is going hand in hand with the renewable energy movement, and this will no doubt be reflected in infrastructure for charging EVs, sometimes assisted by governments, sometimes in spite of them.

Meanwhile, on the global scale, corporations are slowly shuffling onto the renewables bandwagon. Renew Economy has posted a press release from Bloomberg New Energy Finance, which shows that corporations signed a record volume of power purchase agreements (PPAs) for clean energy in 2017, with the USA shuffling fastest, in spite of, or more likely because of, Trump’s dumbfuckery. The cost-competitiveness of renewables is one of the principal reasons for the uptick, and it looks like 2018 will be another mini-boom year, in spite of obstacles such as reducing or disappearing subsidies, and import tariffs for solar PVs. Anyway, the press release is well worth a read, as it provides a neat sketch of where things are heading in the complex global renewables market.

Getting back to Australia and its sluggish EV market, the naysayers are touting a finding in the Green Vehicle Guide, a federal government website, which suggested that a Tesla powered by a coal-intensive grid emitted more greenhouse gas than a Toyota Corolla. All this is described in a recent SMH article, together with a 2016 report, commissioned by the government, which claimed that cars driven in the Eastern states have a “higher CO2 output than those emitted from the tailpipes of comparative petrol cars”. However, government spokespeople are now admitting that the grid’s emission intensity will continue to fall into the future, and that battery efficiency and EV performance are continuously improving – as is obvious. Still, there’s no sign of subsidies for EVs from this government, or of future penalties for diesel and petrol guzzlers. Meanwhile, the monstrous SUV has become the vehicle of choice for most Australians.

While there are many many honourable exceptions, and so many exciting clean green projects up and running or waiting in the wings, the bulk of Australians aren’t getting the urgency of climate change. CO2 levels are the highest they’ve been in 15 million years (or 3 million, depending on website), and the last two years’ published recordings at Mauna Loa (2015 and 2016) showed increases in atmospheric CO2 of 3PPM for each year, for the first time since recording began in 1960 (when it was under 1PPM). This rate of CO2 growth, apparently increasing – though with variations due largely to ENSO – is phenomenal. There’s always going to be a see-saw in the data, but it’s an ever-rising see-saw. The overall levels of atmospheric CO2 are now well above 400PPM. Climate Central describes these levels as ‘permanent’, as if humans and their effects will be around forever – how short-sighted we all are.

The relationship between atmospheric CO2 and global warming is fiendishly complex, and I’ll try, with no doubt limited success, to tackle it in future posts.

 

Mustn’t forget my update on Trump’s downfall: the Mueller team has very recently interviewed A-G Sessions, who’s been less than honest about his meetings with Russians. Nobody knows what Sessions was asked about in in his lengthy session (haha) with the inquirers, but he’s a key figure when it comes to obstruction of justice as well as conspiracy. Word now is that Trump himself will be questioned within weeks, which could be either the beginning of the end, or just the end. Dare to hope.

 

Written by stewart henderson

January 26, 2018 at 10:26 am