the new ussr illustrated

welcome to the Urbane Society for Skeptical Romantics, where pretentiousness is as common as muck

capacitors, supercapacitors and electric vehicles

leave a comment »

from the video ‘what are supercapacitors’

Jacinta: New developments in battery and capacitor technology are enough to make any newbie’s head spin.

Canto: So what’s a supercapacitor? Apart from being a super capacitor?

Jacinta: I don’t know but I need to find out fast because supercapacitors are about to be eclipsed by a new technology developed in Great Britain which they estimate as being   ‘between 1,000 and 10,000-times more effective than current supercapacitors’.

Canto: Shite, they’ll have to think of a new name, or downgrade the others to ‘those devices formerly known as supercapacitors’. But then, I’ll believe this new tech when I see it.

Jacinta: Now now, let’s get on board, superdisruptive technology here we come. Current supercapacitors are called such because they can charge and discharge very quickly over large numbers of cycles, but their storage capacity is limited in comparison to batteries…

Canto: Apparently young Elon Musk predicted some time ago that supercapacitors would provide the next major breakthrough in EVs.

Jacinta: Clever he. But these ultra-high-energy density storage devices, these so-much-more-than-super-supercapacitors, could enable an EV to be charged to a 200 kilometre range in just a few seconds.

Canto: So can you give more detail on the technology?

Jacinta: The development is from a UK technology firm, Augmented Optics, and what I’m reading tells me that it’s all about ‘cross-linked gel electrolytes’ with ultra-high capacitance values which can combine with existing electrodes to create supercapacitors with greater energy storage than existing lithium-ion batteries. So if this technology works out, it will transform not only EVs but mobile devices, and really anything you care to mention, over a range of industries. Though everything I’ve read about this dates back to late last year, or reports on developments from then. Anyway, it’s all about the electrolyte material, which is some kind of highly conductive organic polymer.

Canto: Apparently the first supercapacitors were invented back in 1957. They store energy by means of static charge, and I’m not sure what that means…

Jacinta: We’ll have to do a post on static electricity.

Canto: In any case their energy density hasn’t been competitive with the latest batteries until now.

Jacinta: Yes it’s all been about energy density apparently. That’s one of the main reasons why the infernal combustion engine won out over the electric motor in the early days, and now the energy density race is being run between new-age supercapacitors and batteries.

Canto: So how are supercapacitors used today? I’ve heard that they’re useful in conjunction with regenerative braking, and I’ve also heard that there’s a bus that runs entirely on supercapacitors. How does that work?

Jacinta: Well back in early 2013 Mazda introduced a supercapacitor-based regen braking system in its Mazda 6. To quote more or less from this article by the Society of Automotive Engineers (SAE), kinetic energy from deceleration is converted to electricity by the variable-voltage alternator and transmitted to a supercapacitor, from which it flows through a dc-dc converter to 12-V electrical components.

Canto: Oh right, now I get it…

Jacinta: We’ll have to do posts on alternators, direct current and alternating current. As for your bus story, yes, capabuses, as they’re called, are being used in Shanghai. They use supercapacitors, or ultracapacitors as they’re sometimes called, for onboard power storage, and this usage is likely to spread with the continuous move away from fossil fuels and with developments in supercaps, as I’ve heard them called. Of course, this is a hybrid technology, but I think they’ll be going fully electric soon enough.

Canto: Or not soon enough for a lot of us.

Jacinta: Apparently, with China’s dictators imposing stringent emission standards, electric buses, operating on power lines (we call them trams) became more common. Of course electricity may be generated by coal-fired power stations, and that’s a problem, but this fascinating article looking at the famous Melbourne tram network (run mainly on dirty brown coal) shows that with high occupancy rates the greenhouse footprint per person is way lower than for car users and their passengers. But the capabuses don’t use power lines, though they apparently run on tracks and charge regularly at recharge stops along the way. The technology is being adopted elsewhere too of course.

Canto: So let me return again to basics – what’s the difference between a capacitor and and a super-ultra-whatever-capacitor?

Jacinta: I think the difference is just in the capacitance. I’m inferring that because I’m hearing, on these videos, capacitors being talked about in terms of micro-farads (a farad, remember, being a unit of capacitance), whereas supercapacitors have ‘super capacitance’, i.e more energy storage capability. But I’ve just discovered a neat video which really helps in understanding all this, so I’m going to do a breakdown of it. First, it shows a range of supercapacitors, which look very much like batteries, the largest of which has a capacitance, as shown on the label, of 3000 farads. So, more super than your average capacitor. It also says 2.7 V DC, which I’m sure is also highly relevant. We’re first told that they’re often used in the energy recovery system of vehicles, and that they have a lower energy density (10 to 100 times less than the best Li-ion batteries), but they can deliver 10 to 100 times more power than a Li-ion battery.

Canto: You’ll be explaining that?

Jacinta: Yes, later. Another big difference is in charge-recharge cycles. A good rechargeable battery may manage a thousand charge and recharge cycles, while a supercap can be good for a million. And the narrator even gives a reason, which excites me – it’s because they function by the movement of ions rather than by chemical reactions as batteries do. I’ve seen that in the videos on capacitors, described in our earlier post. A capacitor has to be hooked up to a battery – a power source. So then he uses an analogy to show the difference between power and energy, and I’m hoping it’ll provide me with a long-lasting lightbulb moment. His analogy is a bucket with a hole. The amount of water the bucket can hold – the size of the bucket if you like – equates to the bucket’s energy capacity. The size of the hole determines the amount of power it can release. So with this in mind, a supercar is like a small bucket with a big hole, while a battery is more like a big bucket with a small hole.

Canto: So the key to a supercap is that it can provide a lot of power quickly, by discharging, then it has to be recharged. That might explain their use in those capabuses – I think.

Jacinta: Yes, for regenerative braking, for cordless power tools and for flash cameras, and also for brief peak power supplies. Now I’ve jumped to another video, which inter alia shows how a supercapacitor coin cell is made – I’m quite excited about all this new info I’m assimilating. A parallel plate capacitor is separated by a non-conducting dielectric, and its capacitance is directly proportional to the surface area of the plates and inversely proportional to the distance between them. Its longer life is largely due to the fact that no chemical reaction occurs between the two plates. Supercapacitors have an electrolyte between the plates rather than a dielectric…

Canto: What’s the difference?

Jacinta: A dielectric is an insulating material that causes polarisation in an electric field, but let’s not go into that now. Back to supercapacitors and the first video. It describes one containing two identical carbon-based high surface area electrodes with a paper-based separator between. They’re connected to aluminium current collectors on each side. Between the electrodes, positive and negative ions float in an electrolyte solution. That’s when the cell isn’t charged. In a fully charged cell, the ions attach to the positively and negatively charged electrodes (or terminals) according to the law of attraction. So, our video takes us through the steps of the charge-storage process. First we connect our positive and negative terminals to an energy source. At the negative electrode an electrical field is generated and the electrode becomes negatively charged, attracting positive ions and repelling negative ones. Simultaneously, the opposite is happening at the positive electrode. In each case the ‘counter-ions’ are said to adsorb to the surface of the electrode…

Canto: Adsorption is the adherence of ions – or atoms or molecules – to a surface.

Jacinta: So now there’s a strong electrical field which holds together the electrons from the electrode and the positive ions from the electrolyte. That’s basically where the potential energy is being stored. So now we come to the discharge part, where we remove electrons through the external surface, at the electrode-electrolyte interface we would have an excess of positive ions, therefore a positive ion is repelled in order to return the interface to a state of charge neutrality – that is, the negative charge and the positive charge are balanced. So to summarise from the video, supercapacitors aren’t a substitute for batteries. They’re suited to different applications, applications requiring high power, with moderate to low energy requirements (in cranes and lifts, for example). They can also be used as voltage support for high-energy devices, such as fuel cells and batteries.

Canto: What’s a fuel cell? Will we do a post on that?

Jacinta: Probably. The video mentions that Honda has used a bank of ultra capacitors in their FCX fuel-cell vehicle to protect the fuel cell (whatever that is) from rapid voltage fluctuations. The reliability of supercapacitors makes them particularly useful in applications that are described as maintenance-free, such as space travel and wind turbines. Mazda also uses them to capture waste energy in their i-Eloop energy recovery system as used on the Mazda 6 and the Mazda 3, which sounds like something worth investigating.

References (videos can be accessed from the links above)


Written by stewart henderson

September 5, 2017 at 10:08 am

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: