the new ussr illustrated

welcome to the Urbane Society for Skeptical Romantics, where pretentiousness is as common as muck

on electrickery, part 2 – the beginnings

leave a comment »

William Gilbert, author of De Magnete, 1600

Canto: So let’s now start at the beginning. What we now call electricity, or even electromagnetism, has been observed and questioned since antiquity. People would’ve wondered about lightning and electrostatic shocks and so forth.

Jacinta: And by an electrostatic shock, you mean the sort we get sometimes when we touch a metal door handle? How does that work, and why do we call it electrostatic?

Canto: Well we could do a whole post on static electricity, and maybe we should, but it happens when electrons – excess electrons if you like – move from your hand to the conductive metal. This is a kind of electrical discharge. For it to have happened you need to have built up electric charge in your body. Static electricity is charge that builds up through contact with clothing, carpet etc. It’s called static because it has nowhere to go unless it comes into contact with a positive conductor.

Jacinta: Yes and it’s more common on dry days, because water molecules in the atmosphere help to dissipate electrons, reducing the charge in your body.

Canto: So the action of your shoes when walking on carpet – and rubber soles are worst for this – creates a transfer of electrons, as does rubbing a plastic rod with wooden cloth. In fact amber, a plastic-like tree resin, was called ‘elektron’ in ancient Greek. It was noticed in those days that jewellery made from amber often stuck to clothing, like a magnet, causing much wonderment no doubt.

Jacinta: But there’s this idea of ‘earthing’, can you explain that?

Canto: It’s not an idea, it’s a thing. It’s also called grounding, though probably earthing is better because it refers to the physical/electrical properties of the Earth. I can’t go into too much detail on this, its complexity is way above my head, but generally earthing an electrical current means dissipating it for safety purposes – though the Earth can also be used as an electrical conductor, if a rather unreliable one. I won’t go any further as I’m sure to get it wrong if I haven’t already.

Jacinta: Okay, so looking at the ‘modern’ history of our understanding of electricity and magnetism, Elizabethan England might be a good place to start. In the 1570s mathematically minded seamen and navigators such as William Borough and Robert Norman were noting certain magnetic properties of the Earth, and Norman worked out a way of measuring magnetic inclination in 1581. That’s the angle made with the horizon, which can be positive or negative depending on position. It all has to do with the Earth’s magnetic field lines, which don’t run parallel to the surface. Norman’s work was a major inspiration for William Gilbert, physician to Elizabeth I and a tireless experimenter, who published De Magnete (On the Magnet – the short title) in 1600. He rightly concluded that the Earth was itself a magnet, and correctly proposed that it had an iron core. He was the first to use the term ‘electric force’, through studying the electrostatic properties of amber.

Canto: Yes, Gilbert’s work was a milestone in modern physics, greatly influencing Kepler and Galileo. He collected under one head just about everything that was known about magnetism at the time, though he considered it a separate phenomenon from electricity. Easier for me to talk in these historical terms than in physics terms, where I get lost in the complexities within a few sentences.

Jacinta: I know the feeling, but here’s a relatively simple explanation of earthing/grounding from a ‘physics stack exchange’ which I hope is accurate:

Grounding a charged rod means neutralizing that rod. If the rod contains excess positive charge, once grounded the electrons from the ground neutralize the positive charge on the rod. If the rod is having an excess of negative charge, the excess charge flows to the ground. So the ground behaves like an infinite reservoir of electrons.

So the ground’s a sink for electrons but also a source of them.

Canto: Okay, so if we go the historical route we should mention a Chinese savant of the 11th century, Shen Kuo, who wrote about magnetism, compasses and navigation. Chinese navigators were regularly using the lodestone in the 12th century. But moving into the European renaissance, the great mathematician and polymath Gerolamo Cardano can’t be passed by. He was one of the era’s true originals, and he wrote about electricity and magnetism in the mid-16th century, describing them as separate entities.

Jacinta: But William Gilbert’s experiments advanced our knowledge much further. He found that heat and moisture negatively affected the ‘electrification’ of materials, of which there were many besides amber. Still, progress in this era, when idle curiosity was frowned upon, was slow, and nothing much else happened in the field until the work of Otto von Guericke and Robert Boyle in the mid-17th century. They were both interested particularly in the properties, electrical and otherwise, of vacuums.

Canto: But the electrical properties of vacuum tubes weren’t really explored until well into the 18th century. Certain practical developments had occurred though. The ‘electrostatic machine’ was first developed, in primitive form, by von Guericke, and improved throughout the 17th and 18th centuries, but they were often seen as little more than a sparky curiosity. There were some theoretical postulations about electrics and non-electrics, including a duel-fluid theory, all of which anticipated the concept of conductors and insulators. Breakthroughs occurred in the 1740s with the invention of the Leyden Jar, and with experiments in electrical signalling. For example, an ingenious experiment of 1746, conducted by Jean-Antoine Nollet, which connected 200 monks by wires to form a 1.6 kilometre circle, showed that the speed of electrical transmission was very high! Experiments in ‘electrotherapy’ were also carried out on plants, with mixed results.

Jacinta: And in the US, from around this time, Benjamin Franklin carried out his experiments with lightning and kites, and he’s generally credited with the idea of positive to negative electrical flow, though theories of what electricity actually is remained vague. But it seems that Franklin’s fame provided impetus to the field. Franklin’s experiments connected lightning and electricity once and for all, though similar work, both experimental and theoretical, was being conducted in France, England and elsewhere.

Canto: Yes, there’s a giant roll-call of eighteenth century researchers and investigators – among them Luigi Galvani, Jean Jallabert, John Canton, Ebenezer Kinnersley, Giovanni Beccaria, Joseph Priestley, Mathias Bose, Franz Aepinus, Henry Cavendish, Charles-Augustin Coulomb and Alessandro Volta, who progressed our understanding of electrical and magnetic phenomena, so that modern concepts like electric potential, charge, capacitance, current and the like, were being formalised by the end of that century.

Jacinta: Yes, for example Coulomb discovered, or published, a very important inverse-square law in 1784, which I don’t have the wherewithal to put here mathematically, but it states that:

The magnitude of the electrostatic force of attraction between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.

This law was an essential first step in the theory of electromagnetism, and it was anticipated by other researchers, including Priestley, Aepinus and Cavendish.

get it?

Canto: And Volta produced the first electric battery, which he demonstrated before Napoleon at the beginning of the 19th century.

Jacinta: And of course this led to further experimentation – almost impossible to trace the different pathways and directions opened up. In England, Humphrey Davy and later Faraday conducted experiments in electrochemistry, and Davy invented the first form of electric light in 1809. Scientists, mathematicians, experimenters and inventors of the early nineteenth century who made valuable contributions include Hans Christian Orsted, Andre-Marie Ampere, Georg Simon Ohm and Joseph Henry, though there were many others. Probably the most important experimenter of the period, in both electricity and magnetism, was Michael Faraday, though his knowledge of mathematics was very limited. It was James Clerk Maxwell, one of the century’s most gifted mathematicians, who was able to use Faraday’s findings into mathematical equations, and more importantly, to conceive of the relationship between electricity, magnetism and light in a profoundly different way, to some extent anticipating the work of Einstein.

Canto: And we should leave it there, because we really hardly know what we’re talking about.

Jacinta: Too right – my reading up on this stuff brings my own ignorance to mind with the force of a very large electrostatic discharge….

now try these..


Written by stewart henderson

October 22, 2017 at 10:09 am

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: