an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

technomagic – the tellingbone

leave a comment »

weirdly wired – the first telephone

The telephone remains the acme of electrical marvels. No other thing does so much with so little energy. No other thing is more enswathed in the unknown.

Herbert Casson ‘The history of the telephone”, 1910. Quoted in “The Information”, J Gleick

I recently had a conversation with someone of my generation about the technology of our childhoods, and how magical they seemed to us. So let me start with the motor car, or auto-mobile. Our first family car was a Hillman Minx, which was bought in maybe 1964 or so, not too long after we arrived in Australia. The model probably dated from the early or mid-fifties – we certainly weren’t wealthy enough to buy a brand new car. But that didn’t make it any less magical. How was it that you could turn a key and bring an engine to life, and with a bit of footwork and handiwork get the beast to move backward and forward and get its engine to putter or roar? I hadn’t the foggiest.

Next in the mid-sixties came the television box, fired by electrickery. Somehow, due to wires and signals, we could see a more or less fuzzy image of grey figures from faraway, giving us news of Britain and the World Cup, and shows from the USA like Hopalong Cassidy and the Cisco Kid, all made from faraway – even one day from the moon – for our entertainment and enlightenment. Wires and signals, I mean, WTF?

Next we became the first people in the street to have our own tellingbone (or that’s what we proudly told ourselves, actually we had no idea). So people would ring us from the other side of town and then talk to us as if they were standing right next to us!! It was crazy-making, yet people seemed generally to remain as sane as they had been. I would lie in bed trying to work it out. So someone would dial a number, and more or less instantaneously a ringing sound would come out of the phone miles and miles away, and a person there would pick up this bone-shaped piece of plastic with holes in it, and they would talk into one end and listen through the other end, and they could hear this person on the ‘end of the line’ miles away far better than they could hear someone else talking in the next room, all thanks, we were informed, to those wires and signals again.

So, forward to adulthood. One of the most informative books I’ve read in recent years is titled, appropriately enough, The Information, by James Gleick. It’s a history of information processing and communication from tribal drumming to the latest algorithms, and inter alia it tells the story of how the telephone became one of the most rapidly universalised forms of information transfer in human history in the period 1870-1900, approximately. And of course it didn’t come into existence out of nowhere. It replaced the telegraph, the first electrical telecommunications system, itself only a few decades old. Previous to this there were many experiments and developments in the field by the likes of Alessandro Volta, Johann Schweigger and Pavel Schilling. Studying electricity and its potential was the hottest of scientific activities throughout the 19th century, especially the first half.

The telegraph, though, was a transmission-reception system run by experts, making it very unlike the telephone. Gleick puts it thus:

The telegraph demanded literacy; the telephone embraced orality. A message sent by telegraph had first to be written, encoded and tapped out by a trained intermediary. To employ the telephone, one just talked. A child could use it.

Nevertheless the system of poles and wires, the harnessing of electricity, and the concepts of signal and noise (both abstract and exasperatingly practical) had all been dealt with to varying degrees of success well before the telephone came along.

So now let’s get into the basic mechanics. When we talk into a phone we produce patterned sound waves, a form of mechanical energy. Behind the phone’s mouthpiece is a diaphragm of thin metal. It vibrates at various speeds according to the patterned waves striking it. The diaphragm is attached to a microphone, which in the early phones consisted simply of carbon grains in a container attached to an electric current, which were compressed to varying degrees in response to the waves vibrating the diaphragm, modulating the current. That current flows through copper wires to a box outside your home which connects with other wires and cables in a huge telecommunications system.

Of course the miracle to us, or to me, is how a sound wave signal, moving presumably more or less at the speed of sound, and distinctive for every human (not to mention dogs, birds etc), can be converted to an electrical signal, moving presumably at some substantial fraction of the speed of light, then at the end of its journey be converted back to a mechanical signal with such perfect fidelity that you can hear the unmistakeable tones of your grandmother at the other end of the line in real time. The use of terms such as analogue and digitising don’t quite work for me, especially when combined with the word ‘simply’, which is often used. In any case, the process is commonplace enough, and has been used in radio, in recorded music and so forth.

It all bears some relation to the work of the greatest physical theorist of the 19th century, James Clerk Maxwell, who recognised and provided precise relationships between electrical impulses, magnetism and light, bringing the new and future technologies together, to be amplitude-modified by engineers who needed to understand the technicalities of input, output, feedback, multiplexing, and signal preservation. But as the possibilities of the new technology expanded, so did technological expertise, and switchboards and networks became increasingly complex. They eventually required a numbering system to keep track of users and connections, and telephone directories were born, only to grow in size and number, costing acres of forestry, until in the 21st century they didn’t. I won’t go into the development of mobile and smartphones here, those little black boxes of mystery which I might one day try to peer inside, but I think I’ve had enough armchair demystifying of the technomagical for one day.

Yet something I didn’t think of as a child was that the telephone was no more technomagical than just speaking and listening to the person beside you. To speak, to make words and sentences out of sounds, first requires a sound-maker (a voice-box, to employ a criminally simplistic term), then a complex set of sound-shapers (the tongue, the soft and hard palates, the teeth and lips) into those words and sentences. Once they leave the speaker’s lips they make waves in the air – complex and variable waves which carry to the hearer’s tympanum, stimulating nerves to send electrical impulses to the auditory cortex. This thinking to speaking to listening to comprehending process is so mundane to us as to breed indifference, but no AI process comes close to matching it.


The information, James Gleick, 2011

Written by stewart henderson

March 1, 2019 at 4:31 pm

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: