an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

a DNA dialogue 3: two anti-parallel strands

leave a comment »

but why the twist? – we don’t know yet

Jacinta: Ok so these two strands of DNA are described as anti-parallel. Is this just intended to confuse us?

Canto: Apparently not, in fact it’s quite essential. The useful q&a site Quora has good info on this, and understanding it in all its complexity should help us to understand DNA general – it’s one of a thousand useful entry points.

Jacinta: Yes, and I’ll try to explain. It became clear to us last time that the strands or ribbons twisted round in a double helix, called the backbone of the molecule, are made from phosphate and deoxyribose sugar, covalently bonded together. That means tightly bonded. Between the two strands, connecting them like ladder rungs, are nitrogenous bases (this is new to us). That’s adenine, thymine, guanine and cytosine, bonded together – A always to T, and C to G – with weak hydrogen bonds. We’ll have to look at why they must be paired in this way later.

Canto: It’s called Chargaff’s base pairing rule, which doesn’t tell us much.

Jacinta: And, according to a respondent from Quora, ‘the two strands of DNA are anti-parallel to each other. One of them is called leading strand, the other is lagging strand’. But I don’t quite get this. How are there two strands of DNA? I thought there was one strand with two sugar-phosphate backbones, and a rung made up of two – nitrogenous nucleobases? – weakly connected by hydrogen bonds.

Canto: I think the idea is there are two strands, with the attached bases, one next to another on the strand, and weakly attached to another base, or set of bases each attached to another phosphate-sugar backbone. As to why the whole thing twists, rather than just being a straight up-and-down ladder thing, I’ve no idea. Clearly we’re a couple of dopey beginners.

Jacinta: Well, many of the Quora respondents have been teaching molecular biology for years or are working in the field, and just skimming through, there’s a lot be learned. For now, being anti-parallel is essential for DNA replication – which makes it essential to DNA’s whole purpose if I can call it that. I’ll also just say that the sugars in the backbone have directionality, so that the way everything is structured, one strand has to go in the opposite direction for the replication to work. If for example the strands were facing in the same direction, then the base on one side would connect to a hydrophobic sugar (a good thing) but the base on the other side would be facing a hydrophilic phosphate (a bad thing). Each base needs to bond with a sugar – that’s to say a carbon atom, sugar being carbon-based – so one strand needs to be an inversion of the other. That’s part of the explanation.

Canto: Yes, I find many of the explanations are more like descriptions – they assume a lot of knowledge. For example one respondent says that the base pairs follow Chargaff’s rule and that means purines always pair up with pyrmidines. Not very helpful, unless maybe you’re rote-learning for a test. It certainly doesn’t explain anti-parallelism.

Jacinta: Well, although we don’t fully understand it yet, it’s a bit clearer. Anti-parallelism is an awkward term because it might imply, to the unwary, something very different from being parallel. The strands are actually parallel but facing in the opposite direction, and when you think about the structure, the reason for that becomes clearer. And imagining those backbone strands facing in the same direction immediately shows you the problem, I think.

Canto: Yes and for more insight into all that, we’ll need to look more closely at pyrmidines and purines and the molecular structure of the backbone, and those bases, and maybe this fellow Chargaff.


Written by stewart henderson

January 21, 2020 at 2:38 pm

Leave a Reply

%d bloggers like this: