interactional reasoning: modularity

Mercier and Sperber write a lot about modules and modularity in their book on interactional reasoning and its evolution. I’ve passed this over as I find the concepts difficult and I’m not sure if understanding reasoning as a module, if it fits that description, is essential to the thesis about interactional reasoning and its superiority to the intellectualist model. However, as an autodidact who hates admitting intellectual defeat, I want to use this blog to fully understand stuff for its own sake – and I generally find the reward is worth the pain.
Modules and modularity are introduced in chapter 4 of The enigma of reason. The idea is that there’s a kind of inferential mechanism that we share with other species – something noted, more or less, by David Hume centuries ago. A sort of learning instinct, as argued by bird expert Peter Marler, but taken further in our species, as suggested by Stephen Pinker in The language instinct, and by other cognitive psychologists.
This requires us to think more carefully about the term ‘instinct’. Marler saw it as ‘an evolved disposition to acquire a given type of knowledge’, such as songs for birds and language for humans. We’ve found that we have evolved predispositions to recognise faces, for example, and that there’s a small area in the inferior temporal lobes called the fusiform face area that plays a vital role in face recognition.
However reasoning is surely more conceptual than perceptual. Interestingly, though, in learning how to do things ‘the right way’, that’s to say, normative behaviour, children often rely on perceptual cues from adults. When shown the ‘right way’ to do something by a person they trust, in a teacherly sort of way (this is called ostensive demonstration), an infant will tend to do it that way all the time, even though there may be many other perfectly acceptable ways to perform that act. They then try to get others to conform to this ostensively demonstrated mode of action. This suggests, perhaps, an evolved disposition for norm identification and acquisition.
Face recognition, norm acquisition and other even more complex activities, such as reading, are gradually being hooked up to specific areas of the brain by researchers. They’re described as being on an instinct-expertise continuum, and according to Mercier and Sperber:
[they] are what in biology might typically be called modules: they are autonomous mechanisms with a history, a function, and procedures appropriate to this function. They should be viewed as components of larger systems to which they each make a distinct contribution. Conversely, the capacities of a modular system cannot be well explained without identifying its modular components and the way they work together.
A close reading of this passage should suggest to us that reasoning is one of those larger systems informed by many other mechanisms. The mind, according to the authors, is an articulated system of modules. The neuron is a module, as is the brain. The authors suggest that this is, at the very least, the most useful working hypothesis. Cognitive modules, in particular, need not be innate, but can harness biologically evolved modules for other purposes.
I’m not sure how much that clarifies, though it has helped me, for what it’s worth. And that’s all I’ll be posting on interactional reasoning, for now
Leave a Reply