# a bonobo humanity?

‘Rise above yourself and grasp the world’ Archimedes – attribution

## What is electricity? part 1 – static electricity, mostly

Canto: So it seems we’ve been here before but we’re back at the beginning again, because we’re still largely ignorant. And sadly, even if we finally get a handle on this complex phenomenon, we’ll be likely to forget it again through disuse, and then we’ll die.

Jacinta: So let me begin as naively as possible. Electricity is this energy source, or comes from this energy source, which travels through a wire by some kind of force that excites the electrons in the wire, which then oscillate and create an energy transfer along the wire, to a connector to a light bulb or a toaster, and when a switch connects the wire to the toaster it heats up your bread. But electricity doesn’t have to travel though a wire because I think lightning is electricity, but it needs a conducting material, which in the case of lightning is probably water vapour. I’ve heard somewhere that water is quite a good conductor of electricity.

Canto: Well, all that may or may not be true but what is voltage, what is current and why are certain materials conductors, and superconductors, electrically speaking, and what is an electric field? And I’ve heard that electrons really do flow in a wire, rather than just oscillating, though I’ve no idea what to make of that.

Jacinta: My next step is to look for experts, and to try to put their explanations into my own words, for ownership purposes. So I went to the ‘expert site’, Quora, and found quite a few contradictory or confusing responses, but assuming that the response that comes up first is some kind of popularly selected ‘best’ response, I’ll focus on Anthony Yeh’s answer. Oh by the way, the question is something like ‘what do electrons actually do in an electrical circuit?’ – though even that requires prior knowledge of what an electrical circuit actually is.

Canto: So let’s see if we can bed down the concept of an electrical circuit. So a website called ‘all about circuits’ gives us the basics, starting with static electricity. This was probably woman’s first discovery relating to the electrickery thing. Two different materials rubbed together – glass and silk, wax and wool – created this stickiness, this attraction to each other. And then it was noticed that, after the rubbing, the identical materials, such as two glass rods, exerted a force against each other. And another observation was that the wax, after rubbing with the wool, and the rod after rubbing with the silk, attracted each other.

Jacinta: Yes, this must’ve seemed quite bizarre to first discoverers. And they found that it worked as a sort of law. If the item was attracted by glass it would be repelled by wax – that’s to say, two rubbed wax cloths would always repel each other, as would the two rubbed glass rods. Which led to speculation about what was going on. The materials didn’t appear to be altered in any way. But they behaved differently after rubbing. Seemed like some invisible, quasi-magic force was in operation.

Canto: One of the earliest speculators that we know about was Charles du Fay (1698-1739). Note the dates – we’re really into the period inspired by Galileo, Newton and Huygens, the early days of theoretical and experimental physics. He separated the force involved into two, which he called vitreous and resinous. They were at first thought to be caused by invisible attractive and repulsive fluids. They later came to be known as positive and negative charges.

Jacinta: But when Benjamin Franklin (1706-90) came to experiment with what became known as electricity, it was still thought of as a fluid…

Canto: But hang on – this static electricity stuff must go back way earlier. Sparks fly, and you feel the energy on your skin when you remove, say, a piece of nylon clothing. And you see the sparks in the dark. I get it from metal door-handles quite regularly, and you can actually see it – it ain’t no fluid. Surely they noticed this way more than a couple of hundred years ago.

Jacinta: Okay let’s go back thousands of years, to Thales of Miletus, about 600 BCE. I’m using Quora again here. He noticed that rubbed amber was able to attract stuff, like leaves and other ground debris. Theophrastus, a student of Plato and Aristotle, who took over Aristotle’s Lyceum, also left some notes on this phenomenon, but this didn’t get any further than observation. William Gilbert (1544-1603), a much under-rated genius whom I read about in Thomas Crump’s  A brief history of science, wrote a treatise, On the magnet, which compared the attractive, magnetic properties of lodestones with the properties of rubbed amber. He called this property ‘electric’, after elektron, the Greek word for amber. He also built the first electroscope, a simple needle that pivots toward an electrically charged body. Gilbert was able to distinguish between a magnet, which always remained a magnet, that’s to say, an attracter of metals, and an electrically charged material, which could easily lose its charge. So we’re now into the 17th century, and very far from understanding the phenomenon. The first electrical machine was constructed by Otto von Guericke (1602-86), another interesting polymath, in 1660. It was a rotating globe of sulphur, which attracted light material, creating sparks. Nothing new of course, but a useful public demonstration model.

Canto: So we’re now getting to a period when a few enlightened folks were set to wondering. And this was when they must’ve noted the phenomenon’s small-scale similarity to lightning.

Jacinta: Yes, and so experiments with lightning were undertaken in the eighteenth century, generally with disastrous results. The fact is, though Ben Franklin did do some experimentation with kites and lightning, he mainly focused on glass and amber rods. He noted, as before, that there were two different forces, or charges, attractive and repulsive. When a rubbed amber rod was brought toward another rubbed amber rod they repulsed each other. When the same amber rod was brought toward a glass rod, they were attracted. He considered there were two opposite aspects of the same fluid (for some reason investigators – at least some of them – was still thinking in terms of fluids). The identical aspects of the fluid repelled, while the opposite aspects attracted. He decided, apparently quite arbitrarily, to name one (glass) positive, the other (amber) negative. And we’ve been stuck with this designation ever since..

Canto: Yes, I’ve heard that it would have been much better to name them the other way round, but I’ve no idea why. And also, why is all this called static electricity? Obviously that name came later, but what does it mean? We hear people saying ‘I’m getting a lot of static’, which seems to mean some kind of interference with a signal, but I’ve no idea why it’s called that.

Jacinta: Oh shite, we’ll never get to the bottom of all this. Here’s a Wikipedia definition, which might help:

Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is named in contrast with current electricity, which flows through wires or other conductors and transmits energy

Canto: Okay, that helps. Static electricity ‘remains’ – it has to be discharged. So lightning is a discharge of static electricity?

Jacinta: I believe so, and that spark you get from the car doorhandle is a discharge of the static electricity built up in your body. Now let’s return to the online textbook ‘All about Circuits’. It points out that Ben Franklin did have a reason for his positive-negative designation. Here’s a quote:

Following Franklin’s speculation of the wool rubbing something off of the wax, the type of charge that was associated with rubbed wax became known as “negative” (because it was supposed to have a deficiency of fluid) while the type of charge associated with the rubbing wool became known as “positive” (because it was supposed to have an excess of fluid). Little did he know that his innocent conjecture would cause much confusion for students of electricity in the future!

Canto: Okay, I’m not sure whether this is a headfuck. When wax is rubbed with wool they attract each other. Franklin thought in terms of fluids, and he conjectured that, in the rubbing, the wool removed fluid from the wax – so wool had an excess of the fluid, and wax had a deficiency. The deficiency, which of course wasn’t really a deficiency, he termed ‘negative’ and the excess was ‘positive’. Sort of makes sense. Though why people since have felt this is the wrong way round, I don’t get at this stage.

Jacinta: So now we come to Charles-Augustin de Coulomb (1736-1806), and I suspect we’ll be dwelling on him for a while, because ‘All about circuits’ deals with him rather cursorily, methinks. It tells us that Coulomb experimented with electricity in the 1780s using a ‘torsional balance’ (wtf?) to measure the force generated between two electrically charged objects.

Canto: Exquisitely meaningless at this stage. Anyway, onward and downward…

References

https://en.wikipedia.org/wiki/Charles_François_de_Cisternay_du_Fay

https://www.quora.com/What-were-static-electricity-shocks-believe-to-be-during-antiquity-and-the-Middle-Ages

Thomas Crump, A brief history of science, 2001

https://en.wikipedia.org/wiki/Static_electricity

Written by stewart henderson

November 28, 2021 at 8:52 pm

Posted in electricity, electrons