an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Archive for the ‘biochemistry’ Category

reading matters 7

leave a comment »

She has her mother’s laugh, by Carl Zimmer , science author and journalist, blogger, New York Times columnist, etc etc

content hints – inheritance and heredity, genetics and epigenetics, Darwin and Galton, the Hapsburg jaw, eugenics, Hugo de Vries, Theodor Boveri, Luther Burbank, Pearl and Carol Buck, Henry Goddard, The Kallikak Family, Hitler’s racial hygiene laws, morons, the five races etc, Frederick Douglass, Thomas Hunt Morgan, Emma Wolverton, PKU, chromosomal shuffling, meiosis, cultural inheritance, mitochondrial DNA, Mendel’s Law, August Weismann, germ and soma, twin studies, genetic predispositions, mongrels, Neanderthals, chimeras, exosomes, the Yandruwandha people, IVF, genomic engineering, Jennifer Doudna, CRISPR, ooplasm transfers, rogue experiments, gene drives, pluripotency, ethical battlegrounds.

Written by stewart henderson

July 28, 2020 at 12:22 pm

epigenetics and imprinting 7: more problems, and ICRs

leave a comment »

This image has an empty alt attribute; its file name is screen-shot-2020-02-02-at-10.11.35-pm-1.pngthe only image I can find that I really understand


In the previous post in this series I wrote about the connection between two serious disorders, Angelman syndrome and Prader-Willi syndrome, their connection to a missing small section of chromosome 15, and how they’re related to parental inheritance. These syndromes can sometimes also be traced back to uniparental disomy, in which the section of chromosome 15 is intact, but both copies are inherited from the mother (resulting in PWS) or the father (resulting in AS).

So the key here is that this small section of chromosome 15 needs to be inherited in the correct way because of the imprinting that comes with it. To take it to the genetic level, UBE3A is a gene which is only expressed from the maternal copy of chromosome 15. If that gene is missing in the maternal copy, or if, due to uniparental disomy, both copies of the chromosome are inherited from the father, UBE3A protein won’t be produced and symptoms of Angelman syndrome will appear. Similarly, PWS will develop if a certain imprinted gene or genes aren’t inherited from the father. Other imprinting disorders have been found, for example, one that leads to Beckwith-Wiedemann syndrome, though the mechanism of action is different, in that both copies of a gene on chromosome 11 are switched on when only the paternal copy should be expressed. This results in abnormal growth (too much growth) in the foetus. It too has an ‘opposite’ syndrome, Silver-Russell syndrome, in which the relevant protein expression is reduced, resulting in retarded growth and dwarfism. 

But now to the question of exactly how genes are switched on and off, or expressed and repressed. DNA methylation, briefly explained in my first post on this topic, is essential to this. Methyl groups are carbon-hydrogen compounds which can be bound to a gene to switch it off, but here’s where I start to get confused. I’ll quote Carey and try to make sense of it:

… it may be surprising to learn that it is often not the gene body that is methylated. The part of the gene that codes for protein is epigenetically broadly the same when we compare the maternal and paternal copies of the chromosome. It’s the region of the chromosome that controls the expression of the gene that is differently methylated between the two genomes.

N Carey, The epigenetics revolution, 2011 p140

The idea, I now realise, is that there’s a section of the chromosome that controls the part of the gene that codes for the protein and it’s this region that’s differently methylated. Such regions are called imprinting control regions (ICRs). Sometimes this is straightforward, but it can get extremely complicated, with whole clusters of imprinted genes on a stretch of chromosome, being expressed from the maternally or paternally derived chromosomes, and not simply through methylation. An ICR may operate over a large region, creating ‘roadblocks’, keeping different sets of genes apart, and affecting thousands of base-pairs, not always in the same way. Repressed genes may come together in a ‘chromatin knot’, while other, activated genes from the same region form separate bundles.

Imprinting is a feature of brain cells – something which, as of the writing of Carey’s book (2011), is a bit of a mystery. Not so surprising is the number of expressed imprinted genes in the placenta, a place where competing paternal-maternal demands are played out. As to what is going on in the brain, Carey writes this:

Professor Gudrun Moore of University College London has made an intriguing suggestion. She has proposed that the high levels of imprinting in the brain represents a post-natal continuation of the war of the sexes. She has speculated that some brain imprints are an attempt by the paternal genome to promote behaviour in young offspring that will stimulate the mother to continue to drain her own resources, for example by prolonged breastfeeding.

N Carey, The epigenetics revolution, 2011. pp141-2

This sounds pretty amazing, but it’s a new epigenetic world we’re exploring. I’ll explore more of it next time.


The epigenetics revolution, by Nessa Carey, 2011

Epigenetics, video: SciShow

Written by stewart henderson

February 2, 2020 at 10:33 pm

a DNA dialogue 4: purines, mostly

leave a comment »

Canto: So what’s a pyrimidine, molecularly speaking, and why does it differ from a purine, and why does it matter?

Jacinta: They’re two different types of nitrogenous bases, dummy, which are a subset, maybe, of nucleotide bases. All of which is largely gobbledygook at present.

Canto: Ok, we know there are four different nitrogenous bases in DNA.  Two of them, A & G, adenine and guanine, are purines, which structurally are two-carbon nitrogen ring bases. The other two, thymine and cytosine, T & C, are pyrimidines, which are one-carbon nitrogen ring bases. Uracil, in RNA, is also a pyrimidine. It replaces the thymine used in DNA.

Jacinta: That’s right, now we know that in DNA these nitrogenous bases are connected across the double helix, in pairs, in a particular way. A (a purine) always connects with T (a pyrimidine), and similarly C is always bonded to G. So why is this?

Canto: Why is it so? Well, put simply, the molecular structure of purines, which you’ll note have a two-carbon ring structure and so are larger than pyrimidines, doesn’t allow them to bond within the group, that’s to say with other purines, and the same goes with pyrimidines. It’s essentially due to the difference between hydrogen bond donors and acceptors for these groups.

Jacinta: So, looking at purines first, considering that they’re one of the building blocks of life, it’s not surprising that we find them in lots of the food we eat, especially in meat, mostly in organs like kidneys or liver. Structurally they’re heterocyclic aromatic organic compounds – as are pyrimidines. Heterocyclic simply means they have a ring structure composed of more than one element – in this case carbon and nitrogen. An aromatic compound isn’t quite what you think – structurally it means that it’s strong and stable, due to resonance bonds, which we won’t go into here. Below is a model of a purine molecule, which has the chemical formula C5H4N4 – the black globes are carbon atoms, the nitrogens are blue and the hydrogens white.

Purines and pyrimidines are both self-inhibiting and activating, so they actively bond with each other but inhibit self-bonding, so that they maintain a more or less equal amount as each other within the cell.

Canto: So that’s purines in general, but in DNA there are two purines, adenine and guanine, which must differ structurally – and are there any others?

Jacinta: Oh yes, caffeine is a purine, as well as uric acid…

Canto: Definitely aromatic.

Jacinta: And there are many others. Purines are very important molecules, used throughout the body for a variety of purposes, as components of ATP, cyclic AMP, NADH and coenzyme A, for example.

Canto: I’ve heard of some of those…

Jacinta: As to the difference between adenine and guanine, here’s how it’s described in this Research Gate article, which I’m sure is reliable:

The main difference between adenine and guanine is that adenine contains an amine group on C-6, and an additional double bond between N-1 and C-6 in its pyrimidine ring, whereas guanine contains an amine group on C-2 and a carbonyl group on C-6 in its pyrimidine ring

Canto: Shit, that explanation needs to be explained, please.

Jacinta: Haha well let’s look at more diagrammatic structures, but first – an amine group, also called an amino group, is a derivative of  NH3 (ammonia), consisting of a nitrogen atom bonded to hydrogen atoms, at its simplest. This gives adenine the formula ‎C5H5N5. Guanine has, in addition to the amine group, a carbonyl group, which is a carbon double bonded to an oxygen, C=O. This gives guanine the formula C5H5N5O. Anyway, it’ll all become clear over the next dozen or so years…



Written by stewart henderson

January 26, 2020 at 5:26 pm

A DNA dialogue 2: the double helix

leave a comment »


Canto: Ok we talked about base pairs at the end of dialogue 1. A (nucleo)base pair is, duh, a pairing of nucleobases. There are four types of base in DNA – adenine and thymine, which always pair together, and the other pairing, cytosine and guanine.

Jacinta: Please explain – what’s a nucleobase, what do they do, and why do they come in pairs?

Canto: Well, let’s see, how do we begin… DNA stands for deoxyribonucleic acid…

Jacinta: So it’s an acid. But bases are like the opposite of acids aren’t they? So how can an acid be constructed of its opposite?

Canto: Look, I can’t answer that right now – I haven’t a clue – but let’s keep investigating the structure and function, and the answers might come. So, you’ll know that there was a battle in the 1950s to elucidate the structure of DNA, and it was found to form a double helix two strands of – I don’t know what – connected to each other in a twisted sort of way by, I think, those base pairs connected by hydrogen bonds. Anyway, here’s a fairly typical explanation, from Nature Education, which we’ll try to make sense of:

The double helix describes the appearance of double-stranded DNA, which is composed of two linear strands that run opposite to each other, or anti-parallel, and twist together. Each DNA strand within the double helix is a long, linear molecule made of smaller units called nucleotides that form a chain. The chemical backbones of the double helix are made up of sugar and phosphate molecules that are connected by chemical bonds, known as sugar-phosphate backbones. The two helical strands are connected through interactions between pairs of nucleotides, also called base pairs. Two types of base pairing occur: nucleotide A pairs with T, and nucleotide C pairs with G.

Jacinta: So I think I have a problem with this description. I think I need a picture, fully labelled. So the two strands themselves are made up of nucleotides, and the connections between them are made up of bonded sugar and phosphate molecules? But the strands are connected, via sugar and phosphate, in particular ways – ‘through interactions’ – which only allow A to pair with T, and C to pair with G?.

Canto: I think that’s right. Maybe we can find a picture.

Jacinta: Ok, so we got it completely wrong. The backbone, of sugar-phosphate, is the outer, twisted strand, or two of them, like the vertical bars of a twisted ladder, or the toprails of a spiral staircase, and the base pairs are like the stairs themselves, made of two separate parts, the bases, bonded together by hydrogen…

Canto: Forget the description, the picture above is worth all our words. It also tells us that the DNA molecule is around 2 nanometres wide. That’s two billionths of a metre. And 3.4 nanometres long for a full twist of the double helix, I think.

Jacinta: Whateva. There’s also this claim that the two strands are ‘anti-parallel’. It looks to me as if they’re simply parallel, but twisted. What does this mean? Is it significant?

Canto: I don’t know – maybe we’ll find out next time. I’m already exhausted.

Jacinta: …….

Written by stewart henderson

January 16, 2020 at 5:13 pm

Posted in biochemistry, DNA, science

Tagged with , ,

epigenetics and imprinting 4: the male-female thing

leave a comment »

Gametes are gametes because of epigenetic modifications in their pro-nuclei, but they have to lose these modifications, or transform them, when they come together to form zygotes. The male pro-nucleus DNA methylation is stripped away immediately after sperm penetrates egg. The egg pronucleus undergoes the same process, but more gradually. It’s like a wiping away of epigenetic memory, creating totipotency, which becomes a more limited pluripotency as the blastocyst, with its inner cell mass (ICM), forms. 

The ICM cells begin differentiating through the regulation of some key genes. For example, a gene codes for a protein that switches on a set of genes, which code for proteins in a cascading effect. But it’s not quite a matter of switching genes on or off, it’s rather more complex. The process is called gene reprogramming, and it’s of course done effortlessly during every reproductive cycle. Artificial reprogramming of the kind carried out by Yamanaka and others, an essential part of cloning, hasn’t come close to this natural process that goes on in mammals and other species every day.

Clearly, though the epigenetic reprogramming for the female pronucleus is different from that carried out more swiftly in the male. As Carey puts it, ‘the pattern of epigenetic modifications in sperm is one that allows the male pronucleus to be reprogrammed relatively easily.’ Human researchers haven’t been particularly successful in reprogramming an adult nucleus by various methods, such as transferring it to a fertilised egg or treating it with the four genes isolated by Yamanaka. The natural process of gene reprogramming eliminates most of the epigenetic effects accumulated in the parent genes, but as the reprogramming is a different process in the male and female pro-nucleus, this shows that they aren’t functionally equivalent. There is a ‘parent-of-origin effect’. Experiments done on mice to explore this effect found that DNA methylation, an important form of chromatin modification (and the first one discovered), was passed on to offspring by the female parent. That’s to say, DNA from the female was more heavily methylated than that from the male. Carey describes the DNA as ‘bar-coded’ as coming from the male or the female. The common term for this is imprinting, and it’s entirely epigenetic.

Imprinting has been cast by Carey, and no doubt others, as an aspect of the ‘battle of the sexes’. This battle may well be imprinted in the pronuclei of the fertilised egg. Here’s how Carey puts the two opposing positions:

Male: This pregnant female is carrying my genes in the form of this foetus. I may never mate with her again. I want my foetus to get as big as possible so that it has the greatest chance of passing on my genes.

Female: I want this foetus to pass on my genes. But I don’t want it to be at the cost of draining me so much that I never reproduce again. I want more than this one chance to pass on my genes.

So there’s a kind of balance that has developed in we eutherian mammals, in a battle to ensure that neither sex gains the upper hand. Further experiments on mice in recent times have explored how this battle is played out epigenetically. I’ll look at them in the next post in this series.


The Epigenetics Revolution, by Nessa Carey, 2011

Written by stewart henderson

January 9, 2020 at 10:50 am

epigenetics and imprinting 3: at the beginning

leave a comment »

stuff that can be done with iPS cells

A zygote is the union of two gametes (haploid cells), the sperm and the egg. It’s the first diploid cell, from which all the other diploid cells – scores of trillions of them – are formed via mitosis.

What’s interesting about this from an epigenetic perspective is that gametes are specialised cells, but zygotes are essentially totipotent – the least specialised cells imaginable – and all this has to do with epigenetics.

I’m not entirely clear about what happens to turn specialist gametes into totipotent zygotes, and that’s what I’m trying to find out. I’m not sure yet whether zygotes immediately start differentiating as they divide and multiply or whether the first divisions – in what is called the zygote phase, which eventually forms the blastocyst – form an identical set of zygotes. 

The two-week period of these first divisions is called the germinal phase. During this phase zygotes divide mitotically while at the same time moving, I’m not sure how, from the fallopian tube to the uterus. Apparently, after the first few divisions, differentiation starts to occur. The cells also divide into two layers, the inner embryo and the outer placenta. The growing group of cells is called a blastocyst. The outer layer burrows into the lining of the uterus and continues to create a web of membranes and blood vessels, a fully developed placenta.

But, as Nessa Carey would say, this is a description not an explanation. How does this initial cell differentiation – into the outer layer (trophectoderm), which becomes the placenta and other extra-embryonic tissues, and the inner cell mass (ICM) – come about? Understanding these mechanisms, and the difference between totipotent cells (zygotes) and pluripotent cells (embryonic stem cells) is clearly essential for comprehending, and so creating, particular forms of life. This PMC article, which examines how the trophectoderm is formed in mice, demonstrates the complexity of all this, and raises questions about when the ‘information’ that gives rise to differentiation becomes established in these initial cells. Note for example this passage from the article, which dates to 2003:

It is now generally accepted that trophectoderm is formed from the outer cell layer of the morula, while the inner cells give rise to the ICM, which subsequently forms the epiblast and primitive endoderm lineages. What remains controversial, however, is whether there is pre-existing information accounting for these cell fate decisions earlier than the 8-cell stage of development, perhaps even as early as the oocyte itself. 

The morula is the early-stage embryo, consisting of 16 totipotent cells. The epiblast is a slightly later differentiation within the ICM. An oocyte is a cytoplasm-rich, immature egg cell.

Molecular biologists have been trying to understand cell differentiation by working backwards, trying to turn specialised cells into pluripotent stem cells, mostly through manipulating their nuclei. You can imagine the benefits, considering the furore created a while back about the use of embryonic stem (ES) cells in medical treatments. To be able to somehow transform a liver or skin cell into this pluripotential multi-dimensional tool would surely be a tremendous breakthrough. Most in the field, however, considered such a transformation to be little more than a pipe-dream.

Carey describes how this breakthrough occurred. Based on previous research, Shinya Yamanaka and his junior associate Kazutoshi Takahashi started with a list of 24 genes already found to be ‘pluripotency genes’, essential to ES cells. If these genes are switched off experimentally, ES cells begin to differentiate. The 24 genes were tested in mouse embryonic fibroblasts, and, to massively over-simplify, they eventually found that only 4 genes, acting together, could transform the fibroblasts into ES-type cells. Further research confirmed this finding, and the method was later found to work with non-embryonic cells. The new cells thus created were given the name ‘induced pluripotent stem cells’, or iPS cells, and the breakthrough has inspired a lot of research since then.

So what exactly does this have to do with epigenetics? The story continues.

Written by stewart henderson

January 6, 2020 at 5:28 pm

epigenetics and imprinting 2: identical genes and non-identical phenotypes

leave a comment »

I’ve now listened to a talk given by Nessa Carey (author of The epigenetic revolution) at the Royal Institution, but I don’t think she even mentioned imprinting, so I may not mention it again in this post, but I’ll get back to it. 

The talk was of course easier to follow than the book, and it didn’t really teach me anything new, but it did hammer home some points that I should’ve mentioned at the outset, and that is that it’s obvious that genetics isn’t the whole story of our inheritance and development because it doesn’t begin to explain how, from one fertilised egg – the union of, or pairing of, two sets of chromosomes – we get, via divisions upon divisions upon divisions, a complex being with brain cells, blood cells, skin cells, liver cells and so forth, all with identical DNA. It also doesn’t explain how a maggot becomes a fly with the same set of genes (or a caterpillar becomes a butterfly, to be a little more uplifting). These transformations, which maintain genetic inheritance while involving massive change, must be instigated and shaped by something over and above genetics but intimately related to it – hence epigenetics. Other examples include whether a crocodile hatchling will turn out male or female – determined epigenetically via the temperature during development, rather than genetically via the Y chromosome in mammals.   

So, to add to the description I gave last time, the histone proteins that the DNA wraps itself round come in batches or clusters of eight. The DNA wraps around one cluster, then another, and so on with millions of these histone clusters (which have much-studied ‘tails’ sticking out of them). And I should also remind myself that our DNA comes in a four-letter code strung together, out of which is constructed 3 billion or so letters.

The detailed description here is important (I hope). One gene will be wrapped around multiple histone clusters. Carey, in her talk, gave the example of a gene that breaks down alcohol faster in response to consumption over time. As Carey says, ‘[the body] has switched on higher expression of the gene that breaks down alcohol’. The response to this higher alcohol consumption is that signals are generated in the liver which induce modifications in the histone tails, which drive up gene expression. If you then reduce your alcohol consumption over time, further modifications will inhibit gene expression. And it won’t necessarily be a matter of off or on, but more like less or more, and the modifications may relate to perhaps an endless variety of other stimuli, so that it can get very complicated. We’re talking about modifications to proteins but there can also be modifications to DNA itself. These modifications are more permanent, generally. This is what creates specialised cells – it’s what prevents brain cells from creating haemoglobin, etc. Those genes are ‘tightened up’ or compacted in neurons by the modifying agents, so that, for example, they’re permanently unable to express the haemoglobin-creating function.

All of this is extremely fascinating and complex, of course, but the most fascinating – the most controversial and headline-creating stuff – has to do with carrying epigenetic changes to the next generation. The inheritance of acquired characteristics, no less. Next time.


What is epigenetics? with Nessa Carey – The Royal Institution (video)

The Epigenetics Revolution, by Nessa Carey, 2011

Written by stewart henderson

January 3, 2020 at 3:58 pm

how statins work 3: the beginnings of cholesterol, from Acetyl-CoA

leave a comment »

Coenzyme A – an acetyl group attaches to the -SH shown in red

So how is cholesterol made in the body? We need to know this in order to understand how statins inhibit or interfere with this process.

I’ve shown the actual structure of cholesterol in part 1 of this series, but remember it’s a sterol, which is a steroid – four carbon rings with hydrogen atoms attached – in which one of the hydrogens is replaced by an alcohol group. The particular form of sterol called cholesterol, with a 7-carbon chain attached to the end-carbon ring (the D ring), and three methyl groups attached to specific carbons in the rings and chain (it’s better to look at the skeletal structure in part 1). There are precisely 27 carbon atoms specifically placed within the molecule.

I’m using a set of videos to understand how cholesterol is synthesised – it might be best to look at them yourself, but I’m writing it all down to improve my own understanding. So we start by understanding something about acids and their conjugate bases. Apparently an acid is a molecule which is capable of donating protons into solution. Take pyruvic acid and its conjugate base pyruvate. Here’s what Wikipedia says about them:

Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO, is a key intermediate in several metabolic pathways throughout the cell.

I don’t understand the first sentence, but no matter, pyruvic acid is a 3-carbon molecule with a carboxylic acid at one end and a ketone group in the middle of the molecule (according to Britannica, a ketone is ‘any of a class of organic compounds characterized by the presence of a carbonyl group in which the carbon atom is covalently bonded to an oxygen atom. The remaining two bonds are to other carbon atoms or hydrocarbon radicals)’. The proton that comes off the oxygen of the alcohol group of the pyruvic acid can be donated into the surrounding solution, increasing its acidity. The pyruvic acid is thus transformed into its negatively charged conjugate base (it’s no longer capable of donating protons but it can receive them). This is the case with all acids in the cytoplasm of cells. As inferred in the quote above, conjugate bases are vital components of biosynthetic pathways. Most of the molecules in the cytoplasm will exist as pyruvate at a physiological pH of around 7.5.

Next – and hopefully this will become clear eventually – we’re going to look at two molecules, NAD+ (nicotinamide adenine dinucleotide) and NADP+ (nicotinamide adenine dinucleotide phosphate). They transport electrons, and are capable of accepting a hydride anion, which is a hydrogen atom with a negative charge. The normal hydrogen atom, called protium, has a proton and an electron only. When it donates away its electron it becomes a hydrogen cation, and when it gains an electron it becomes a hydride anion.

NAD+ is an adenine organic base bound to a ribose sugar. Then there are two phosphate groups coming off the ribose sugar, the second of which attaches to another ribose sugar. This second ribose sugar has nicotinamide attached to it (see below),

in which the phosphate groups are magenta-coloured circles. To explain something about ribose sugars, here’s something from Pearson Education:

The 5-carbon sugars ribose and deoxyribose are important components of nucleotides, and are found in RNA and DNA, respectively. The sugars found in nucleic acids are pentose sugars; a pentose sugar has five carbon atoms. A combination of a base and a sugar is called a nucleoside. Ribose, found in RNA, is a “normal” sugar, with one oxygen atom attached to each carbon atom. Deoxyribose, found in DNA, is a modified sugar, lacking one oxygen atom (hence the name “deoxy”). This difference of one oxygen atom is important for the enzymes that recognize DNA and RNA, because it allows these two molecules to be easily distinguished inside organisms.

So, just for my own understanding, nucleotides include phosphate groups. NAD+ is a dinucleotide, with two nucleotides (ribose sugars with phosphate groups attached), attached to adenine and to nicotinamide molecules. Also, NAD+ has a positive charge around the nicotinamide – on its nitrogen atom.

NAD+ becomes neutralised by accepting a hydride anion (one proton and two electrons) and becomes NADH, or reduced NAD. Now, remembering NADP+, it has an extra phosphate group on the ribose sugar of the adenine nucleotide (also called an organic base, apparently). Like NAD+, NADP+ can accept a hydride anion (becoming reduced NADP) and then later exchange it in another reaction. Effectively these molecules are electron carriers, collecting electrons and transporting them to where they’re needed for other reactions.

Now to introduce something else completely new for me – Acetyl-CoA (acetyl coenzyme A). A quick grab again, this time from Wikipedia:

Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid [Krebs] cycle to be oxidized for energy production

Acetyl-CoA is found, and presumably produced, in mitochondria, and as part of this cholesterol-synthesising pathway it needs to be removed from the ‘mitochondrial matrix’. What’s that, I ask. So here’s a bit about the mitochondrial matrix, from yet another source, this time

The mitochondrion consists of an outer membrane, an inner membrane, and a gel-like material called the matrix. This matrix is more viscous than the cell’s cytoplasm as it contains less water. The mitochondrial matrix has several functions.It is where the citric acid cycle takes place. This is an important step in cellular respiration, which produces energy molecules called ATP. It contains the mitochondrial DNA in a structure called a nucleoid. A mitochondrion contains its own DNA and reproduces on its own schedule, apart from the host cell’s cell cycle. It contains ribosomes that produce proteins used by the mitochondrion. It contains granules of ions that appear to be involved in the ionic balance of the mitochondrion.

So basically this matrix is like (or equivalent to) the cell’s cytoplasm, only more viscous, and contains ribosomes, one or more nucleoids and ionic granules, inter alia.

Acetyl-CoA is essential to the biosynthesis of cholesterol, and is found initially in the mitochondrial matrix, and we need to look at the pathway for its removal from that matrix into the cytoplasm, where all the action occurs.

Intruding into the mitochondrial matrix from the (quite impermeable) inner cell membrane are the cristae, which give the membrane more of a surface layer for interactions. This inner membrane is the site of oxidative phosphorylation. What’s that, I ask. Well, it’s key to the production of ATP, and at least I know that ATP is the ‘energy molecule’, and that it’s produced in mitochondria. Here’s something about the process from Khan Academy:

Oxidative phosphorylation is made up of two closely connected components: the electron transport chain and chemiosmosis. In the electron transport chain, electrons are passed from one molecule to another, and energy released in these electron transfers is used to form an electrochemical gradient. In chemiosmosis, the energy stored in the gradient is used to make ATP.

So a strong proton gradient is built up across the inner membrane of the mitochondrion. It’s a concentration gradient but also an ‘electrical potential difference’ gradient, so that the electrical potential within the matrix is lower, by some 160 millivolts, than that across the inter-membrane space. The protons within this space are unable to pass back into the matrix. The only way they can get back into the matrix is by means of ATP synthase which can harness the energy from the protons as they move down the chemical and electrical gradient, and use that energy to bind ADP to inorganic phosphate to create ATP.

I don’t fully understand all that, but the main point here is that the mitochondrial inner membrane is very ‘tight’, which makes it difficult to transfer Acetyl-CoA out of the matrix and into the inter-membrane space, from which it can more easily diffuse through the more permeable outer membrane into the cytoplasm.

The structure of Acetyl-CoA: it consists of an acetic acid molecule (CH3COOH) with a thioester link to the thiol group of a coenzyme A molecule. The importance for us here is this thiol (HS) group, which is similar structurally to an alcohol (HO) group, as sulphur has similar properties to its periodic table neighbour, oxygen. So thiol groups can be linked to carboxylic acid groups as alcohol groups can. Acetyl essentially means acetic acid with the alcohol removed. To get this Acetyl-CoA out of the matrix, it is first bound to oxaloacetate, a four-carbon molecule, to create citrate, the first molecule of the citric acid cycle. This citrate can be passed through the mitochondrial inner membrane and into the cytoplasm where it can be converted back into Acetyl-CoA.

So the conjugate base, oxaloacetate, has carboxylic acid groups, attached to the first and fourth carbon atoms, that have lost their protons into solution. An enzyme within the matrix is able to combine oxaloacetate with Acetyl-CoA and water to create citrate…

Okay, this is proving to be a much longer story than I might’ve hoped, but I like to be thorough – and in reality I’m still not being thorough enough. There’s a lot of rubbish on the internet about statins, much of it self-serving in one way or another, so I’ll just keep plodding along until I feel at least halfway informed about the matter. Meanwhile, you just keep getting on with your work, and don’t mind me.


Cholesterol biosynthesis part 1, by Ben1994, 2015

Cholesterol biosynthesis part 2, by Ben 1994, 2015

Written by stewart henderson

October 14, 2019 at 5:26 pm

How statins work 1 – stuff about cholesterol, saturated fats and lipoproteins…

leave a comment »

filched from Wikipedia – don’y worry, I don’t understand it either – at least not yet

Statins are HMG-CoA reductase inhibitors, according to Wikipedia’s first sentence on the topic. HMG-CoA reductase is an enzyme – a macromolecule that accelerates or catalyses chemical reactions in cells. The enzyme works in the mevalonate pathway, which produces cholesterol and other terpenoids (terpenoids are very common, varied and useful forms of hydrocarbon).

So what does HMG-CoA stand for, and what’s a reductase?

3 hydroxy -3 methyl-glutaryl coenzyme A, which may be explained later. A reductase is an enzyme which catalyses a reduction reaction, and I’m not sure if that refers to redox reactions, in which case reduction involves the gaining of electrons…

But let’s look at cholesterol, which statins are used against. Sterols are lipid molecules with a polar OH component, and ‘chole’, meaning bile, comes from the liver. So cholesterol is a type of lipid molecule produced largely by the liver or hepatic cells of vertebrate animals. Cholesterol is essential for life, and it’s synthesised in the cell via a complex 37-step process (the mevalonate pathway makes up the first 18 of these). It makes up about 30% of our cell membranes, and its continual production is necessary to maintain cell membrane structure and fluidity. In high food-intake countries such as Australia and the US, we ingest about 300mg of cholesterol a day on average. We also have an intake of phytosterols, produced by plants, which might vary from 200-300mgs. Of course, this is massively dependent on individual diets (increased phytosterol intake may reduce LDL cholesterol, but it comes with its own quite serious problems).

The (very basic) structure of cholesterol is shown below.

The body of the molecule (centre) contains 4 rings of carbon and hydrogen – A, B and C are 6-carbon rings, while D has 5. The bonds between rings A and B, and C and D, represent methyl groups. On the left is a hydroxyl group, which is hydrophilic and polar, though the massive body of the molecule is extremely hydrophobic, which is reinforced by the cholesterol tail connected to the D ring. The hydroxyl polarity creates a binding site, which builds structure as the molecule binds to others.

Interestingly, the need for cholesterol synthesis varies with temperature, or climate. This has to do with fluidity and melting points. People who live in colder climates require less cholesterol production because, in cold weather, solid structure remains intact. Hotter climates cause greater fluidity and increased entropy, so more cholesterol needs to be synthesised to create and maintain structure.

So now to the 18-step mevalonate pathway, by which the liver produces lanosterol, the precursor to cholesterol. Well, on second thoughts, maybe not… It’s fiendishly complex and Nobel Prizes have been deservedly won for working it all out and I’m currently thinking that physics is easy-peasy compared to biochemistry (or maybe not). What I’m coming up against is the interconnectivity of everything and the need to be thorough. For example, in order to understand statins we need to understand cholesterol, and in order to understand cholesterol we need to understand lipids, lipoproteins, the liver, the bloodstream, the digestive system… So I sometimes feel overwhelmed but also annoyed at the misinformation everywhere, with chiropractors or ‘MDs’ announcing the ‘truth’ about statins, cholesterol or whatever in 500-word screeds or 5-minute videos.

Anyway, back to work. Cholesterol is a lipid molecule, and lipids are generally hydrophobic (they don’t mix with water, or to be more exact they’re not very soluble in water), but cholesterol has a hydrophilic hydroxyl side to it. Lipids that have this hydrophilic/hydrophobic mix are called amphipathic. Phospholipids in cell membranes are an example. and they interact with cholesterol in the ‘phospholipid bilayer’. As an indication of the complexity involved, here’s a quote from an abstract of a biochemical paper on this very topic:

Mammalian cell membranes are composed of a complex array of glycerophospholipids and sphingolipids that vary in head-group and acyl-chain composition. In a given cell type, membrane phospholipids may amount to more than a thousand molecular species. The complexity of phospholipid and sphingolipid structures is most likely a consequence of their diverse roles in membrane dynamics, protein regulation, signal transduction and secretion. This review is mainly focused on two of the major classes of membrane phospholipids in eukaryotic organisms, sphingomyelins and phosphatidylcholines. These phospholipid classes constitute more than 50% of membrane phospholipids. Cholesterol is most likely to associate with these lipids in the membranes of the cells.

Anyway, perhaps for now at least I won’t explore the essential role of cholesterol in cell structure and function, but the role of ingested cholesterol, the difference between LDL and HDL cholesterol, and how it relates to saturated fats and heart disease, particularly atherosclerosis. As Gregory Roberts explains it in a Cosmos article, saturated fats (found in butter, meat and palm oil) definitely raise total cholesterol…

But what is saturated fat, as opposed to polyunsaturated or mono-unsaturated fat? Most of us have heard of these terms but do we really know what they mean? Here comes Wikipedia to the rescue (because there’s a lot of bullshit out there):.

saturated fat is a type of fat in which the fatty acid chains have all or predominantly single bonds. A fat is made of two kinds of smaller molecules: glycerol and fatty acids. Fats are made of long chains of carbon (C) atoms. Some carbon atoms are linked by single bonds (-C-C-) and others are linked by double bonds (-C=C-). Double bonds can react with hydrogen to form single bonds. They are called saturated, because the second bond is broken and each half of the bond is attached to (saturated with) a hydrogen atom. Most animal fats are saturated. The fats of plants and fish are generally unsaturated. Saturated fats tend to have higher melting points than their corresponding unsaturated fats, leading to the popular understanding that saturated fats tend to be solids at room temperatures, while unsaturated fats tend to be liquid at room temperature with varying degrees of viscosity (meaning both saturated and unsaturated fats are found to be liquid at body temperature).
Various fats contain different proportions of saturated and unsaturated fat. Examples of foods containing a high proportion of saturated fat include animal fat products such as cream, cheese, butter, other whole milk dairy products and fatty meats which also contain dietary cholesterol. Certain vegetable products have high saturated fat content, such as coconut oil and palm kernel oil. Many prepared foods are high in saturated fat content, such as pizza, dairy desserts, and sausage.
Guidelines released by many medical organizations, including the World Health Organization, have advocated for reduction in the intake of saturated fat to promote health and reduce the risk from cardiovascular diseases. Many review articles also recommend a diet low in saturated fat and argue it will lower risks of cardiovascular diseases, diabetes, or death. A small number of contemporary reviews have challenged these conclusions, though predominant medical opinion is that saturated fat and cardiovascular disease are closely related.

Saturated Fat, Wikipedia. I’ve removed links and notes – they’re just too much of a good thing! Apologies for the lengthy quote but I think this is essential reading in this context.

High density lipoprotein (HDL) cholesterol can be a problem if your levels are low. HDL absorbs cholesterol and carries it back to the liver, from where it’s removed from the body. So generally high levels of HDL will reduce your chances of heart attack and stroke.

As Roberts notes, from the 1950s, heart disease has risen to be a major problem. Heart attack victims have been regularly found to have arteries clogged with ‘waxy plaques filled with cholesterol’. Further proof that cholesterol was to blame came with studies of people with a genetic disease – familial hypercholesterolemia (FH) – which meant that they had some five times the normal levels of blood cholesterol, and suffered heart attacks even as children or teenagers. Also, the rise in blood cholesterol levels and the rise in heart attacks, and heart disease generally, were correlated. This was unlikely to be coincidental.

But what’s a lipoprotein and why the different densities? Here we get into another area of extraordinary complexity. Lipoproteins are vehicles for transporting hydrophobic lipid molecules such as cholesterol, triglycerides and phospholipids through the watery bloodstream or the watery extracellular fluid (blood plasma – the yellowish liquid through which haemoglobin and lipoproteins etc are transported – is a proportion of that fluid). They act as emulsifiers, ‘encapsulating’ the lipids so that they can mix with and move through the fluid. Lipoproteins don’t just come in HD and LD forms – we classify them in terms of their density much as we classify colours in the light (electromagnetic) spectrum. According to that density classification we recognise five major types of lipoprotein in the bloodstream.

Cholesterol arrives in the blood via endogenous (internal) and exogenous (external) pathways. Some 70% of our cholesterol is produced by the liver, so, though diet is an important facet of changing cholesterol levels, finding ways of modifying or blocking liver production was clearly another option. Through studying the way fungi produced chemicals such as penicillin that break down cell walls (a large part of which are cholesterol), Akira Endo was the first to produce a statin from a mould in oranges – mevastatin. That was the beginning of the statin story.


Cholesterol metabolism, part one – video by Ben1994 (excellent)

Cholesterol structure, part 1/2, by Catalyst University

Written by stewart henderson

September 15, 2019 at 10:24 am