a bonobo humanity?

‘Rise above yourself and grasp the world’ Archimedes – attribution

Archive for the ‘diet’ Category

what should a vegan’s pet eat, and other immortal questions

leave a comment »

catmelon

 

Jacinta: So here’s a question – if vegans have pets – say a cat or a dog – do they feed them only vegetables?

Canto: I don’t know, I suppose it would depend on the vegan…

Jacinta: Shouldn’t it depend on the pet? Cats and dogs are carnivores aren’t they? So it would be a form of cruelty to deprive them of meat. Might even be murder.

Canto: We don’t extend murder to the killing of other animals.

Jacinta: Many vegans do.

Canto: Good point. I once read an article by a vegan philosopher, who gets out of those problems by declaring that using animals as pets is unethical. A form of slavery, I suppose.

Jacinta: So, we free the pets? Along with the cows, the sheep, the donkeys, the camels, the water buffalos, the horses, the chooks and pigeons and all those other creatures we’ve used and abused so horridly?

Canto: Well, from memory – I’ll never be able to hunt out the article – he didn’t address the issue of those animals already under captivity of one sort or another. He was simply wanting to argue on general principles that using animals for our personal benefit was unethical.

Jacinta: Even if it benefits the animal?

Canto: Well I suppose the argument would be that even a well-treated slave is still a slave.

Jacinta: But if you free a dog, say, what would happen to it? You’re actually throwing it out of its home, it has nowhere else to go. And I believe that there’s historical evidence that dogs, and probably cats too, have adapted to live with humans. That it was their choice, in a sense. Like pigeons in the city getting fat on leftover bits of hamburger, with no obvious ill-effects. Do pigeons get diabetes?

Canto: Well there’s an obvious difference between scavenging pigeons and pets. Pets don’t choose to become pets. I think that’s the way the argument would run. Unfortunately there are a lot of current pets who would suffer from being set free, but that’s not the issue.

Jacinta: I think I see. We look after the pets we’ve got, then bury them and don’t have any more. And this wouldn’t mean the end of all dogs because there are plenty of strays – scavengers – to maintain the species. And no more enforced ‘pedigree’ breeding – I’d be all for that. But there’s a problem – in order to get rid of all the pets, you have to stop them breeding and that would mean desexing them – a gross interference of their right to reproduce. And if you allow them to reproduce, you must surely bear responsibility for their offspring as your home is theirs. You’re caught in a trap, you can’t walk out, because you love them babies too much.

Canto: You’re looking at it all from a practical perspective, which is all fine and good and relevant, but I think the issue for this philosopher was, I think – judging from him being a vegan – that all such usage of animals – pets as cuddly toys, dolphins as trained performers, horses and camels as pack animals, etc, not to mention farming them for slaughter – is unethical. What do you think of that as a general principle?

Jacinta: I don’t think it holds up, because species take advantage of other species all the time, and not just by preying on them. Sharks have their remoras, we have lice more or less specially adapted to us, roses have their aphids, in fact everywhere you look you have species making use of other species. And presumably being a vegan he marks a strict boundary between animal and vegetable and in reality that’s quite a fuzzy boundary, like with coral. And what about insects, what’s the vegan take on that?

Canto: Presumably negative – they have eyes and antennae and feelings of some sort.

Jacinta: Yes, well it’s a step too far I think. Yes we have a moral responsibility to avoid causing undue suffering….

Canto: Well what about this argument. Because we can survive – and indeed thrive – on only plants, we should do so. I mean, you’re talking about species that, say, are mostly carnivorous – that won’t survive if their food supply dries up. Sharks, for example, they can’t just become vegan, they’ve adapted to a very specific diet. We on the other hand are omnivores, we can dispense with certain varieties of food, including meat, and still live healthy lives, perhaps.

Jacinta: Hmmm, that’s definitely a more difficult question. I do believe that being omnivores, or being very adaptable in our diet has stood us in very good stead in the past, like in the last major  ice age when we almost died out apparently. So I’m wondering whether confining our diet might not expose us to greater risks…

Canto: It may not even mean confining our diet – we could synthesise many of the proteins and other nutrients we nowadays get from meat. We’ve already done that, probably.

Jacinta: Well I’ve heard they’re still a long way from synthesising anything that really has the nutrients as well as the texture, flavour, odour and je ne sais quoi of meat. At under about $200, 000.

Canto: And if they achieved that feat, and got it down to competitive prices, would you go vego?

Jacinta: Well of course – I’d have no reason not to. I just don’t think it’ll happen in my lifetime.

Canto: But let’s say for argument’s sake that it does – would you feed this synthetic stuff to your pet cat?

Jacinta: Ah so we come full circle. Yes I would, since it would be more or less chemically identical to meat.

Canto: But animals that have adapted to become carnivores have also adapted to become hunters. They go together. Haven’t you turned your cat from its proper course in life?

Jacinta: No, she became removed from her ‘proper course’, if there is such a thing, by becoming my pet, whether by her choice or mine, or the choice of her ancestors. Likely she will keep up her hunting skills, catching flies and insects and mice and small birds, if she can. And she will benefit from being my friend, as I will benefit from being hers. Like all good friends, we’ll use each other for own purposes, which we hope will be, and will try to make, mutually beneficial.

Canto: Okay, no further questions your excellency.

 

Written by stewart henderson

March 31, 2016 at 11:37 am

exercise is medicine

leave a comment »

059fd5b761874d05d18b912fe572981e

I read recently that regular moderate exercise sloshes up the blood, washing immune cells from vessel walls. This brings those cells back into the mainstream so to speak, where they can be more effective in combating infection. It makes no small difference – a simple study in which 500 adults were tracked for 12 weeks found that those who engaged in regular aerobic exercise sessions were found to suffer considerably less from upper respiratory tract infections – precisely my personal area of concern. Levels of immune cells in the blood double during exercise.

There’s also good news in this for those of us who couldn’t become gym junkies no matter how hard we tried. Too much exercise (but that means quite a lot) can undo all the good by raising levels of cortisol, noradrenaline and other stress hormones, which alter immune cell functioning. Stress, though, is another one of those complex indicators of health. Mild bouts of stress can be healthful, again boosting blood levels of immune cells. So don’t relax too much, but don’t overdo it.

Even so, exercise helps with everything, and that’s something worth promoting because the recommended dose of exercise isn’t being swallowed by the majority of people in the west. Of course we’ve always kind of known about the benefits of exercise, but the hard evidence has really been coming in lately. A really interesting study was published in the Lancet in 1953, at a time when the rising incidence of heart attacks was becoming a worry. It compared bus conductors to bus drivers on London’s busy double-deckers. The conductors, who spent much of their working day running up and down steps, had half as many heart attacks as their driver colleagues. This landmark study has of course been followed by many others that have confirmed the positive effects of exercise in reducing the incidence of stroke, cancer, diabetes, liver and kidney disease, osteoporosis, dementia and d barkepression.

So what exactly is the goldilocks zone for exercise? Well, anything is better than nothing, and most of us know we’re not doing enough. I’m not quite a senior citizen yet, but studies have been done with the elderly requiring them to do 40 minute walks three times a week, which is hardly strenuous. I catch a tram to work, which requires a ten-minute walk each way, and then a five minute walk each way to my workplace – 30 minutes a day, five days a week, though it would doubtless be better if those 30 minutes were continuous, and if I didn’t dawdle much of the time. The benefits of such a regime have been shown through before-and-after brain imaging. Expansion of the hippocampi, either through the growth of new brain cells, or greater synaptic connectivity, and a restoration of long-distance connections across the brain.

Mental exercise shouldn’t be forgotten either. It has been known for a couple of decades that intellectual stimulation can provide a kind of ‘cognitive reserve’ which can buffer us against the kinds of physical brain deterioration typical of Alzheimer’s and other forms of dementia, but clearer proofs of this have been gathered recently. Magnetic resonance imaging of Alzheimer’s sufferers has caught the goings-on in the brain while cognitive tasks are being performed. Highly educated people – brain workers  if you will – are better able to develop alternative neuronal networks to compensate for damaged areas. I would assume though that it’s not so much about education but about brain usage. Keep tackling new things. Keep using your brain in new ways. And your body for that matter.

Cognitive reserve is now seen as a real thing, and has been pinpointed as residing in the dorsolateral prefrontal cortex, a key area for learning, short term memory, attention and language. Increased activity in this area suggests flexibility in thinking and problem solving. Information processing efficiency is also a key to a healthy brain. Having a high IQ, something I’ve often been sceptical about in the past, is an indication of information processing efficiency, even if the information is often culturally specific. It appears that physical brain deterioration, from Alzheimer’s, stroke and and other causes, can be fended off by compensating neural network development and increased information processing efficiency in certain people, until the deterioration becomes too great to be compensated for, after which things tend to go downhill very rapidly. By the time the symptoms of Alzheimer’s appear in such people, the  physical damage is already well advanced.

A major message from all this is that you should try to develop lifestyle habits involving physical and mental exercise. Always a work in progress.

I note that one of the in terms these days is ‘hat tip’ (h/t), so h/t for this piece to New Scientist, the collection, edition 3: a guide to a better you.

Written by stewart henderson

November 20, 2014 at 8:19 am

Posted in diet, exercise, fitness, lifestyle

Tagged with , ,

want to live to 100?

leave a comment »

… It may destroy diseases of the imagination, owing to too deep a sensibility, and it may attach the affections to objects, permanent, important, and intimately related to the interests of the human species.

Humphry Davy,  on the value of science, in ‘Discourse introductory to a  course of lectures on chemistry’, 1802

il_340x270.643224959_qav7

A great many of us would like to live a long and healthy life, with a greater emphasis on health than length. But both please, if possible, thanks.

I’ve been reading the issues of New Scientist: the collection as they come out. The first issue dealt with the Big Questions, namely Reality, Existence, God, Consciousness, Life, Time, Self, Sleep and Death. Bit of a roller coaster ride, leaving me dizzy, confused, but often enlightened, and sometimes even exhilarated. So, better than a roller coaster. The second issue, entitled The Unknown Universe, took me far out beyond multiverses, quantum loops, energetic dark matter and the eventful horizons of black holes, and essentially taught me that modern cosmology is a mess of competing theories, often competing, it seemed, to be the most egregious ideas that are compatible with mathematical possibility. However, it may be that the studious avoidance of scary maths in these essays/summaries may have made them seem more loopy (or strangulatingly stringy) than they are.

The third issue was more down to earth, and not only earth but me, and you, dear reader. It’s entitled The scientific guide to a better you, and it’s all about longevity, health and success.

So what’s the secret, at least for the first two? Basically, eat healthily, with not too much meat, make sure you have good genes, don’t be too much of a loner (too late for me, I’ve been a loner for 40 years, and that’s unlikely to change, but I’l try, as I always say), be intelligent, active and exploratory. That’s the message of the first half of this issue anyway.

What interested me, though, was the detail. Measurements. Blood sugar, cholesterol, heart rate and many other factors and parameters, most of which I didn’t know I had to be concerned about. The various essays are peppered with these measures of health or lack thereof, but how does your average Jo like me get a measure of these things without pestering doctors on a weekly basis about wellness instead of sickness?

So, for fun, I thought I’d look into these ways of measuring ourselves and see if we can manage them from home. A sort of practical guide to centenarianism and beyond.

1. Body mass index (BMI)

Your BMI is a very rough-and-ready guide to whether or not you’re a healthy weight for your height. Various websites can calculate this for you instantly if you know your height and weight. My current BMI is 26, according to the Heart Foundation, which it regards as ‘overweight’, though very close to the borderline between ‘overweight’ and ‘healthy’. About three years ago my BMI was 29, well into the overweight category, in fact getting close to obese. I decided to eat less, without fasting or ‘going on a diet’, and to try to up my exercise, and over a 2-year period I brought my BMI down from 29 to 23, well into the healthy range. Since then it has crept back up to 26, and I’m struggling to get it back down again. I just need to lose a couple of kilos, and keep them off. The myriad other ways of measuring your health these days might make the old BMI seem outmoded – it doesn’t measure your fat to muscle ratio, for example, or the amount of fat around your heart and other organs – but I find it a useful guide for me, and the cheapest available.

2. Heart rate/blood pressure

Measured in beats per minute, your heart rate naturally varies with exertion, and also with anxiety, stress, illness, drug use and so on. The normal resting heart rate for an adult human ranges from 60 to 100 bpm. You can measure your own heart rate (your pulse) at any time by finding an artery close to the surface. The radial artery on the wrist, the one you see heading in the direction of the thumb, is commonly used due to ease of location, but don’t try it with your thumb which has its own strong pulse. I’ve just located my own wrist pulse and measured it as 62bpm. That’s the first time I’ve ever done it. However, I imagine it would be harder to measure after a bout of HIIT (high intensity interval training), which I sometimes indulge in, or after a moderately strenuous bike-ride. It would be even harder while you’re in the middle of exercise, so that’s where heart rate monitors, including those that can be worn on the wrist, come in handy. A quick google-glance tells me that such wrist devices are selling at $100 to $150. However, caveat emptor, as doubt is being cast on their accuracy. Electrocardiographs (ECGs, or EKGs), which measure the electrical activity of your heart, provide a much more accurate record than heart rate monitors, which are apparently only really effective when you’re at rest. One of the problems is that these optical monitors use light to track your blood, and to get an ‘accurate’ reading, you need to be very still, which sort of defeats the purpose. Reporter Sharon Profis, with the help of cardiologist Jon Saroff of Kaiser Permanente medical center in San Francisco compared various wrist monitor brands with the gold standard EKG measurements, and found them well off-beam especially at over 100 bpm. However, the Garmin Vivofit chest strap monitor, which measures electrical activity, was very accurate. This device can be bought for around $150 in Australia.

3. Cholesterol

Cholesterol’s an essential organic molecule, a sterol, a structural component of our cell membranes. It’s biosynthesised, mainly by our liver cell, often as a precursor to such vital entities as steroid hormones and vitamin D, and researchers have tracked the 37-step process of its synthesis. Cholesterol is transported through the blood within lipoproteins, and that’s where you get HDL (high-density lipoprotein) and LDL (low-density lipoprotein) cholesterol, of which the former is the one that causes problems. Some 32% of Australian adults have high blood cholesterol, the primary cause of atherosclerosis, leading to clogging of major blood vessels. Ways of lowering your LDL levels include not smoking, avoiding transfats, regular moderate exercise, and healthy eating including fruit, veg, grains and pulses and sterol-enriched foods. But of course you know all that. The big question is, can you measure your cholesterol from home? The current answer appears to be no, according to the Harvard Medical School (though I note that their article is 11 years old). The problem is that home testing kits can’t separate the ‘good’ HDL cholesterol from the ‘bad” (LDL). Measuring your overall cholesterol levels might be useful, but the real issue is the proportion that is LDL, not to mention that cholesterol can also be carried by other molecules such as triglycerides.

 4. Blood sugar/glucose

Glucose is a vital source of energy for the body’s cells, and its levels are associated with the hormone insulin, produced by the pancreas. Blood glucose levels naturally vary throughout the day, and having a level regularly above normal is termed hyperglycemia. Hypoglycemia is the term for low levels. Diabetes (technically Diabetes mellitus) is the disease most commonly associated with high blood sugar. General symptoms are frequent urination, hunger pangs and increased thirst.  The mean normal blood sugar level is around 5.5 mM (millimolars). That’s the international standard measure – the Americans measure it differently, which causes the usual confusion. Not surprisingly, considering the global rise in diabetes, blood glucose meters for use at home are readily available, but they’re mostly specially devised for use by diabetics, supervised by healthcare professionals. You can of course buy one and DIY but you must learn to be inured to pricks, and unless you’re at risk, which I’m not, as I don’t have much of a sweet tooth, don’t have particularly high cholesterol, and have never evinced any diabetic symptoms, it’s probably not worth the investment. The essential test associated with ‘pre-diabetes’ or hypoglycaemia is a glucose-tolerance test (GTT).

5. Sequence your genome

According to the Australian government’s National Health and Medical Research Council (NHMRC):

Rapid advances in DNA sequencing technologies now allow an individual’s whole genome to be sequenced. Although this is still relatively expensive, it is likely that in the near future it will become affordable and readily available.

Ah, that other country, the near future. But it is a fact that the price is coming down, from $10 million in 2005 to a mere $1 million in 2007 when James Watson’s genome was sequenced. The going rate in 2012 was under $10,000, and this year (2014) the Garvan Institute of Medical Research in Sydney became one of only three institutes in the world to deliver whole sequenced genomes at under $1000. However, there’s a problem. Your genome will mean nothing to you without expert analysis and interpretation, at a hefty price tag. So what would be the purpose, from a health perspective, of ‘doing your genome’? If you’re already quite healthy, do you want to spend up to $1000 only to find out that you carry a gene which may pre-dispose you to a disease that’s currently non-preventable? Our genome is very complex, so much so that current thinking on the subject, and especially on the introns, the sections that don’t code for proteins, has become more cloudy than ever. We know, or think we know, that the number of introns an organism has is positively correlated with that organism’s complexity, but that’s about all we know for sure, and  considering the enormous complexity of the interaction between genetics and environment, together with our lack of knowledge of the role of so much of our genome (over 98% of which is non-coding DNA), the question of whether it’s worth sequencing at this time is a live one. Of course if the price comes down to $100, or the price of a latte (which will soon be up around that figure) then it’d be well worth it; you would have it there awaiting scientific breakthroughs on all that non-coding stuff.

6. microbiome

If you’ve been paying attention to the world of human health, you’ll know that the microbiome is all the rage at the moment. the term was coined by Joshua Lederburg, who defined it thus, according to Wikipedia:

A microbiome is “the ecological community of commensal, symbiotic, and pathogenic microorganisms that literally share our body space.”

You may well have heard the impressive statistic that you have ten times more bacterial cells (and, most interestingly, archaean cells) growing on or in you than bodily (eukaryotic) cells, though this might become less impressive when you learn that the combined weight of those cells amounts to only a few hundred grams. Still, recent research on the microbiota has turned up some interesting results, especially for health. One finding, which may make it difficult to assess your own microbiome, is that different sets of microbes appear to perform the same function for different people. So you won’t just need to know the genetic content of your microbiome, but its function. Still, we can learn a lot already from our microbiome, according to Catalyst, the ABC science program. For example, we inherit a lot of bacteria from our mothers, via her breast milk, not only directly but because the sugars in breast milk encourage the growth of particular types of bacteria. Most of this gut bacteria does its work in the large intestine or bowel region. They’re anaerobic beasties, so they die when exposed to air. However, recent technological developments (and how often can that story be told) have allowed us to learn far more about them, by sequencing their genes inside the gut. From this we’ve learned that our gut bacteria are vital components of our immune system. And since these bacteria rely on our own diets for their nourishment, the kind of microbiome we have is profoundly related to what we eat. A diverse microbiome results, apparently, from eating a high-fibre diet, and low-fibre processed food, and the ingesting of antibiotics, is reducing that diversity, and contributing to multiple health problems. It appears that a less diverse microbiome finds itself under stress, leading to inflammation, an immune response that can damage our own tissue. As a sufferer from bronchiectasis, a chronic (and incurable) inflammation of the airways due probably to early childhood damage, I’m particularly concerned to limit the extent of inflammation through diet and exercise, so this is probably the aspect of my health I’m most concerned to monitor. And there’s also the relationship between gut bacteria and obesity. Some 62% of Australians are overweight or obese, and I’m one of that majority, and trying not to be.

It has been shown clearly, in mice at least, that a high-fibre diet reduces bronco-constriction, improving resistance to asthma and other airways conditions such as COPD. This is mainly due to the production of short-chain fatty acids by particular bacteria. The short-chain fatty acids are produced though the digestion of dietary fibre. Interestingly, acetate, found in vinegar, is a short-chain fatty acid, and a natural anti-inflammatory, so that’s something I should include regularly in my diet.

Finding out what your particular microbiome is, and how it might align with your health, is a simple if rather unpalatable and ‘intimate’ process. You can apply for a kit from the American Gut Project, an organisation dedicated to researching microbiota. The kit is for obtaining a sample of your ‘biomass’ as they call it, which you then send back to the AGP for analysis. All of this was spelt out in the above-linked Catalyst program, but since that program was aired two months ago, the AGP has been inundated with more biomass than it can deal with, so there’s been a backlog of logs, as it were. I plan to send for a kit anyway. The AGP sends back the results, apparently, with hopefully an analysis of the microbiome easy enough for a layperson to understand.

 

So there’s six areas to look at, either independently or with the help of your GP or other professionals, in terms of measuring how you’re going in terms of overall health, and there are many more aspects of your bodily chemistry and physiology to check up on – hormones, neurotransmitters, bone density, sight, hearing, lung capacity and so forth. Or you can follow the standard advice on diet and exercise, try to avoid stress and hope for the best. And above all don’t stop laughing and dancing, otherwise life would hardly be worth living.

Written by stewart henderson

November 1, 2014 at 6:36 pm

more on organic food

with 2 comments

labels

Since my post of almost a year ago, on the marketing scam that is ‘organic’ food, I’ve noted that this niche market continues to be less niche and more mainstream, so that I no longer make an effort to avoid it. As long as the food’s fresh, tasty and nutritious, I’m happy.

And yet… I think part of my irritation is that I hate fashion. I mean, why the fuck do all these drongos go around wearing Hurley tank-tops and t-shirts? It’s not as if they’re even remotely interesting or imaginative or anything.

However, I must admit the fashion for ‘organics’ is more comprehensible to me than the fashion for Hurley or Nike, labels for goods that are clearly no better than those of their rivals. It seems that organic food has captured the imagination largely because it sounds environmentally positive for those who want to do the right thing without thinking about it too much. Okay it’s a bit more expensive, but there has to be a price for being on the side of the angels, and it’s nice to be trendy and holier-than-thou at the same time.

Then there are the hardened ideologues who take to ‘organics’ as to a religion, actively seeking converts and feeling smugly superior to those who haven’t yet been ‘saved’.  Among those are the real fanatics who warn that conventional food is killing us, that GM ‘horror’ foods and the agribusinesses pedalling them will take over the world and make zombies of us all, and/or that there’s a conspiracy to hide from us the damage that chemically-infested conventional food is doing world-wide.

Of course some will describe me as an ideologue through-and-through, or at least as a hopelessly biased person making fatuous claims to objectivity – a description I’m quite accustomed to hearing – but I can only do my best to be open-minded and undermining of my own prejudices. And if that doesn’t convince anyone I’ll soldier on anyway.

One excuse for returning to the subject is a blog/website called Academics Review, subtitled ‘testing popular claims against peer-reviewed science’, which has posted a piece called ‘Organic Marketing Report‘. Dr Stephen Novella has spoken about the piece on the SGU podcast and on Neurologica blog, but I want to take the opportunity to revisit the issue, as I’ve done so many times in my mind.

For me, three popular claims are made about ‘organic’ food, a kind of ‘nest of claims’ of increasing grandeur and complexity. The most basic claim is that it tastes better, the middle claim is that it’s more nutritious, and the grandest claim is that it’s better for the environment. So let’s look at these claims one at a time, with particular reference to the Academics Review post, where it can help us.

taste

The perception of taste is one of the most subjective and easily manipulable of all our perceptions. Researchers have had a field day with this. You may have heard of the experiments done with white wine dyed with food colouring to look like red, and how this fooled all the wine experts. Numerous other experiments have been done to show that our taste perception can be influenced by mood, by colour, by setting and by the way the food is talked up or talked down before tasting. Then there’s the question of differences between people’s taste buds. What are taste buds? These are the areas on the surface of the tongue, the soft palate and the upper oesophagus that contain taste receptors. Taste buds are constantly being replenished, each one lasting on average 5 days, and it’s estimated that we’ve permanently lost half of our taste receptors by the age of 20. Separate receptors for the basic tastes of bitter, sweet and umami have been found, and the hunt is on for sour. It’s likely that the number of receptors and differences in action of those receptors varies slightly in individuals, so it’s pretty well impossible to get anything substantive out of individual claims that x tastes better than y. However, if in a blind tasting, with a good sample size, we get 80%, or a substantial majority, saying that x tastes better than y, that would be significant.

Of course, it’s difficult to control for all the variables and just to test for ‘organic’ versus conventional. The age of the food, freshness, soil quality, method of growing and various other factors not directly related to organics would have to be neutralised. So we have to take a skeptical approach to all findings.

One blind tasting, reported on here, compared tomatoes, broccoli and potatoes. 194 ‘expert food analysts’ tasted the food and found, according to the report, that the conventional tomatoes tasted sweeter, juicier and more flavoursome than ‘organic’ ones. No significant differences were noted with the broccoli and potatoes. The report doesn’t give the percentage of experts who preferred the conventional tomatoes, and there were some vital differences in the way the produce was grown. In all, not a very convincing study either way.

A series of informal taste tests, conducted in 2007 by Stephanie Zonis, an organic food advocate, comparing eggs, yoghurt, cheese, raspberries and peanut butter among other foodstuffs, found mixed results, mostly a tie in each case, though it seems not to have been a blind tasting and was entirely subjective. She showed commendable honesty, ending with the remark that she didn’t buy organic for the taste.

This cute little video has 3 different products – eggs, carrots and goat’s cheese – and three different subjects tasting them, all of them food experts. Results again are mixed, but the subsequent discussions show that it isn’t the organic v conventional distinction that matters so much. With the cheese it’s the cultures used to produce them, with the carrots it’s the soils and climate, with the eggs it’s whether they’re free range or battery animals, how long the eggs having been hanging around in the supermarket, etc. There are just too many variable to make these kinds of tests particularly useful.

The taste issue regarding organics, I contend, will never be resolved. The trouble is, organic food is constantly touted by advocates (though, to be fair, not all of them) as having superior taste.

Guys, stop doing that.

nutritional content and health

Organics are often recommended as the healthier option, and there are, it seems to me, two aspects to this claim. First, that they contain more and/or better nutrients, and second that they’re healthier because they contain less ‘toxic chemicals’ in the form of pesticides and/or fertilisers. Naturally most consumers of organic foods conflate these two separate issues.

So let’s look briefly at the nutrient issue first.

The Mayo Clinic, the Harvard Medical  School and various other reputable sites that I’ve checked out have all said much the same, that there is no statistically significant evidence that organic food is more nutritious. Of course you will be able to find studies, amongst the very many that have been carried out, that do provide such evidence, but that’s to be expected. Overall the jury’s still out. I don’t think it’ll ever be in. Personally, though, I think we can bypass the findings of endless studies by asking the question “How can nutrients be added to food by organic practices?” I can’t quite see how the practices of organic farming – no synthetic fertilisers or pesticides, no food irradiation, no GMOs – can by themselves add to the nutrients of food grown conventionally. If anyone can explain to me how they can, I’d be prepared to take the studies more seriously.

A more complex issue is that of organics and food safety and public health.

This issue is largely a negative one – that organic foods are healthier because of what they don’t have. Unfortunately, this often involves playing up, as much as possible, the risks and dangers of conventional food. The Organic Marketing Report makes some disturbing points here, quoting one organics promoter, Kay Hamilton, speaking at a conference in 1999: If the threats posed by cheaper, conventionally produced products are removed, then the potential to develop organic foods will be limited. In other words, it’s in the interests of organic food marketers to stress the dangers of conventional foods at every opportunity, and this is being done all over the internet, in case you haven’t noticed.

Some 15 years ago, when the organic marketing push really started to get under way in the USA, conventional food producers expressed concern to the US Department of Agriculture (USDA) that the organic movement was seeking to increase market share by promoting bogus claims about its own products and misinformation about conventional practices. In response, the USDA, with support from the organic food industry, sought to clarify the then recently developed formulation of the organic marketing label. The Secretary of Agriculture had this to say in 2000:

Let me be clear about one thing. The organic label is a marketing tool. It is not a statement about food safety. Nor is ‘organic’ a value judgment about nutrition or quality.

Not surprisingly, though, these remarks have fallen on deaf years, and consumer surveys regularly show that organic food is perceived as healthier, safer and more nutritious, both in the US and elsewhere. Also, a study by the USDA’s Agricultural Marketing Service showed that people bought organic on the basis of the organic label or seal, rather than their understanding of the organic definition. Some 79% of those familiar with the seal could not identify the production standards behind the seal. As many independent observers have noted, the aggressive marketing of organic produce, with little concern for accuracy, has been the main driver of sales. US observers have also noted that the responsible regulators in terms of consumer protection and truth in advertising, namely the Food and Drug Administration (FDA) and the Federal Trade Commission (FTC) have been ineffective due to lack of resources and a lack of will to investigate vague and nebulous claims.

The organic food industry constantly plays on public fears in its marketing strategies, without necessarily telling outright lies. For example, a campaign by the USA’s  Organic Trade Association, using the slogan ‘Organic, it’s worth it’ trumpeted the fact that “All products bearing the organic label must comply with federal, state, FDA, and international food safety requirements”, as if this wasn’t the case with conventional food. Similarly, Stonyfield Organic, a major US producer of organic foods, made a decision in August 2013 to add to the organic seal on their products the term ‘no toxic pesticides used here’, as if this marked them out from other food producers.

If we look beyond the aggressive marketing, which appears to be a mixture of deliberate misinformation and wishful thinking – a sort of naturalistic utopianism, – we find no clear evidence at all that organic food is either more safe or more nutritious than conventional food. The most comprehensive meta-analysis of these claims to date was published by Stanford University School of Medicine in September 2012. The study ‘did not find evidence that organic foods are more nutritious or carry fewer health risks than conventional alternatives’ (that’s a quote from the above-linked ‘Organic Marketing Report’).

The authors of the Organic Marketing Report have little to say about the broader environmental claims made by the organic food industry, because they’ve found from their own market research that the industry sees that health and safety concerns are the main drivers of consumer organic purchasing. So the focus of the industry has been on driving home the message that conventional food is unhealthy if not dangerous, and less nutritious. This message is succeeding in spite of a complete lack of scientific support. People should, I think, be more annoyed than they currently are about a campaign of exaggeration and misinformation that is in no way aligned to the evidence.

I should point out that, while many organic growers are sincere in their belief that they’re producing safer foods, the fact is that using ‘natural’ fertilisers and pesticides is not necessarily safer. David Waltner-Toews provides a salutary example in his excellently-titled book The Origin of Feces:

In spring 2011, a mutant, severely pathogenic, and antibiotic-resistant strain of E coli spread across 13 countries in Europe, sickening more than 3000 people and killing 48. The normal home for all E coli species, most of which are law-abiding, contributing members of society, is in the intestinal tracts of warm-blooded animals – that is, in excrement. This epidemic, however, was spread through fresh sprouts from an organic farm in Germany. The  original contamination source was identified as fenugreek seeds from Egypt. The genetic make-up of the strain of E coli includes material last seen in sub-Saharan Africa.

Waltner-Toews isn’t trying to bag organic farming here – this is about the only mention he makes about organics in his book. As one of the world’s foremost experts on shit, or manure if you prefer, his concern is to educate us on the enormous complexity of the ‘shit cycle’, and its potential for harm as well as good. It’s a complexity that, I suspect, few commercial organic producers are aware of, though they’re dedicated to the idea that their naturally-fertilised produce is safer than conventional stuff. Sadly, food regulators have been conned into believing this, and organic foods, like naturopathic ‘medicines’, are nowhere near as rigorously checked and tested as their conventional counterparts. More than thirty years’ experience of studying manure and fecal-borne infections has convinced Waltner-Toews that these fecal-borne infections are becoming more frequent and more dangerous because global in their reach, due to the internationalism of modern agribusiness. The lack of monitoring of ‘organic’ production with its ‘safe’ natural fertilisers and pesticides is arguably a greater threat to global health than conventional production, which is well-regulated and heavily scrutinised, at least in the west.

environmental impact

Probably the most important claim made by the organic movement, though not as attention-grabbing as the health and safety claims, is that it is more sustainable and has less of an environmental impact than conventional farming and food production. This is, of course, a very difficult claim to analyse because of the enormous variations within conventional food production, but let’s look at some problems with the claim. First, if the organic marketeers succeed in their clear aim of taking over the world, there will be a problem of space. Small-scale backyard organic producers often con themselves into thinking ‘if I can do it, the world can’, but this is a false logic. In my own small backyard I’ve grown – ‘organically’ I suppose – lettuce and spinach and rocket and tomatoes and quinces and almonds and a whole range of herbs, and if I wasn’t such a slackarse I could produce much more, but the fact is that I work for a living, and increasingly my burgeoning neighbourhood is becoming stacked with medium to high-density housing for corporate types who have no time for gardening even if they had an interest, and they have no gardens to garden in anyway. And I suspect a high and growing percentage of these young corporate types  would swear by ‘organic’ food. So just a clear-eyed view of the square kilometre or so around my home tells me feeding the multitude with organics would be quite a feat. As James Mitchell Crow reports, in the science magazine Cosmos, ‘Yields drop when switching to organic, and there isn’t enough organic fertiliser to go around anyway’. As long-time organic farmer Raul Adamchauk (one of the world’s foremost experts on organic farming) puts it:

The challenge for organic agriculture is to help solve the global issues of feeding people in the face of climate change and with increasing population… On some level, it becomes clear that organic agriculture isn’t going to do that by itself. No matter how you figure it, there aren’t enough animals making enough waste to fertilise more than a small fraction of the cropland that we need.

Much more land, therefore, would have to be dedicated to agriculture, with consequences for forestation and biodiversity  – and then there’s the fertiliser problem. There are solutions, but the organic movement’s ideological negativity towards biotechnology will block them for the foreseeable future.
These global problems hold little interest, however, for most urban organic consumers. They’ve largely swallowed the negative message that conventional food is both unhealthy and environmentally damaging. For some, it’s part of a whole ideology of anti-modernity – the modern world is toxically chemical and we need to get back to nature.

But conventional food production, like science, never stands still. Over the past 50 years, during which the world’s population has doubled, food production has increased by 300%, though land taken up with such production has increased by only 12%. These astonishing statistics describe the results of the green revolution begun by Norman Borlaug in the sixties and still ongoing. The green revolution saved millions of lives, and could even be ‘blamed’ for contemporary obesity problems. Here are some more statistics: In 1960, the world’s population stood at just over 3 billion, and the average calorie consumption per person per day was 2189 (according to the UN Dept of Economic and Social Affairs). By 2010 the population was near 7 billion, and the average consumption had risen to 2830. Yields per hectare of rice, wheat, maize and other cereals have been spectacular, and these increases have been attributed more or less equally to improved irrigation, improved seeds and more effective synthetic fertiliser. There have been downsides of course, but biotechnological solutions, if they could be applied, would greatly improve the situation. They include not only pest-resistant and higher-yielding GMOs, but such exciting developments as precision agriculture, an automated agricultural system which restricts pesticide and fertiliser use to those areas of a crop that need them, reducing wastage to a minimum.

The green revolution has been far more beneficial than harmful, and the harms have been exaggerated by the ideologues and marketeers of the organic movement, but organic techniques have been effective in many areas, especially in low-tech farming. The real problem isn’t organic farming per se, it’s ideology, ignorance and sometimes downright dishonesty. Almost all the food we eat has been genetically modified – especially if you’re a vegetarian. It was through playing around with modifications and noting recessive and dominant traits in peas that Mendel discovered genes, that’s to say, he discovered just what it was that we’d been manipulating for millennia. We have transformed the food we eat to make it more tasty and filling and life-giving, though for centuries we barely knew what we were doing. The ‘nature’ that some of us want to go back to is entirely mythical. And we’re not being poisoned by our food, we’re too smart and determined to thrive for that.

Written by stewart henderson

June 28, 2014 at 7:56 pm

food irradiation and the organic food movement

with 3 comments

Oh,rats - they've exposed the conspiracy!

Oh,rats – they’ve exposed the conspiracy!

Food irradiation is a well-known process for preserving food and eliminating or reducing bacteria. It’s used for much the same purpose that pressure cooking of tinned food is used, or the pasteurization of milk. All food used by NASA astronauts in space is irradiated, to reduce the possibility of food-borne illness.

advantages and disadvantages of irradiation

According to the US Department of Health’s Center for Disease Control and Prevention (CDC), irradiation, if applied correctly, has been clearly shown to reduce or eliminate food pathogens, without reducing the nutritional value of the food. It should be noted that irradiation doesn’t make food radioactive. I’ll look at the science of irradiation shortly.

Of course it’s not a cure-all. For example, it doesn’t halt the ageing process, and can make older fruit look fresher than it is. The reduction in nutritional value of the food, caused by the ageing process, can be masked by irradiation. It can also kill off bacteria that produce an odour that alerts you that the food is going off. Also, it doesn’t get rid of neurotoxins like those produced by Clostridium botulinum. Irradiation will kill off the bacteria, but not the toxins produced by the bacteria prior to irradiation.

how does food irradiation work?

Three different types of irradiation technology are used, using gamma rays (cobalt-60), electron beams and x-rays. The idea is the same with each, the use of ionising radiation to break chemical bonds in molecules within bacteria and other microbes, leading to their death or greatly inhibiting their growth. The amount of ionising radiation is carefully measured, and the radiation takes place in a special room or chamber for a specified duration.

When radioactive cobalt 60 is the energy source, it’s contained in two stainless steel tubes, one inside the other, called ‘source pencils’. They’re kept on a rack in an underground water chamber, and raised out of the water when required. The water isn’t radioactive. Food products move along a conveyor belt into a room where they’re exposed to the rack containing the source pencils. Gamma rays (photons) pass through the tubes and treat the food. The cobalt 60 process is generally used in the USA.

An Electron-beam Linear Accelerator generates, concentrates and accelerates electrons to up to 99% of light-speed.These electron beams are scanned over the product. The machine uses energy levels of 5, 7.5 or 10 MeV (million electron volts). Again the product is usually guided under the beam by a conveyor system at a predetermined speed to obtain the appropriate dosage. This will clearly vary with product type and thickness.

The X-ray process starts with an electron beam accelerator targeting electrons on a metal plate. The energy that isn’t absorbed is converted into x-rays, which, like gamma rays, can penetrate food containers more than 40cms thick. Shipping containers, for example.

Most of the radiation used in these processes passes through the food without being absorbed. It’s the absorbed radiation, of course, that has the effect, destroying microbes and so extending shelf life, and slowing down the ripening of fruits and vegetables. The potential is there for food irradiation to replace chemical fumigants and fungicides used after harvest. It also has the potential, through the use of higher doses, to kill contaminating bacteria in meat, such as Salmonella.

Food irradiation is a cold treatment. It doesn’t significantly raise the temperature of the food, and this minimises nutrient loss or changes in texture, colour and flavour. The energy it uses is too low to cause food to become radioactive. It has been compared to light passing through a window. Food irradiation uses the same principle as pasteurization, and can be described as pasteurization by energy instead of heat, or cold pasteurization..

the use of food irradiation in Australia

Due largely to fears about irradiation having to do with radioactivity and nuclear energy, the process isn’t used as widely in Australia (or indeed the USA) as it could be. Irradiation is used in some 50 countries, but the level of usage varies for each country, from very limited in Austria and other EU countries, to a very widespread usage in Brazil. Food Standards Australia New Zealand (FSANZ) summarises our situation thus:

In Australia and New Zealand, only herbs and spices, herbal infusions, tomatoes, capsicums and some tropical fruits can be irradiated.

FSANZ has established that there is a technological need to irradiate these foods, and that there are no safety concerns or significant loss of nutrients when irradiating these foods.

Irradiated food or ingredients must be labelled clearly as having been treated by ionising radiation.

food irradiation, health and safety

Since 1950 hundreds of studies have been carried out on animals fed with irradiated products, including multi-generational studies. On the basis of these studies, food irradiation has been approved by the World Health Organization, the American Dietetic Association, the Scientific Committee of the European Union and many other national and international monitoring bodies. Of course this hasn’t stopped many individuals and organisations from complaining and campaigning against the practice. Concerns include: chemical changes harmful to the consumer; impairment of flavour; the destruction of more ‘good’ than ‘bad’ bacteria; and that it’s an unnecessary process which runs counter to the movement towards regional product, seasonality and real freshness. I’ve already mentioned other problems, such as that it can mask spoiled food, and that it doesn’t destroy toxins already released by bacteria.

opposition from the organic food movement

Food products  must be irradiation-free if they are to certified as ‘organic’, in Australia and elsewhere. Now, I’ve fairly regularly expressed irritation with the ‘organic’ food ideology, most particularly in this post, but I recognise that it appeals to a very diverse set of people, with perhaps a majority simply believing, on faith, that ‘organic’ food will be more nutritious, safer and better for the environment than conventional food. Most of those people wouldn’t know much about food irradiation, but hey, it sounds dodgy, so why not avoid it? I’ve no great argument to make with such people, apart from the old ‘knowledge is power’ arguments, but there are a few individuals and organisations trying to get food irradiation banned, based on what they claim to be evidence. Unsurprisingly, most of these critics are also ‘organic’ food proponents. I’ll look at some criticisms from Eden Organic Foods, a US outfit, which admittedly represents the extreme end of the spectrum (nature before the fall?).

Firstly, in their ‘factsheet’ on irradiation, linked to above (and reprinted verbatim here by another alarmist organisation, the Center for Food Safety), they waste no time in informing us that the beams used are ‘millions of times more powerful than standard medical x-rays’. This sounds pretty scary, but it’s a bogus comparison. Irradiation is designed to kill bugs and bacteria, whereas medical x-rays are for making visible what is invisible to the naked eye. Clearly, the first and foremost concern in testing and studying the technology is to make sure that the chemical changes it induces are safe for humans. Comparisons with medical x-rays are more than irrelevant to this concern, as the author of this factsheet well knows.

Next comes this disturbing claim:

Radiation can do strange things to food, by creating substances called “unique radiolytic products.” These irradiation byproducts include a variety of mutagens – substances that can cause gene mutations, polyploidy (an abnormal condition in which cells contain more than two sets of chromosomes), chromosome aberrations (often associated with cancerous cells), and dominant lethal mutations (a change in a cell that prevents it from reproducing) in human cells. Making matters worse, many mutagens are also carcinogens

Wow. So much for the poor people of Brazil – they’re obviously done for. But how is it that the world’s top scientific agencies missed all these mutagens and carcinogens? Let’s take a closer look.

The term ‘radiolytic products’ simply means the products created by chemical changes that occur when food is irradiated. Similarly, the products created by heat treatment, or simply cooking, might be called ‘thermolytic products’. These are not ‘strange’, they’re quite predictable, for irradiation would be totally ineffective if it didn’t bring about some chemical changes. One of the differences is that radiolytic products are generally undetectable and produce only minor changes in the food compared to the major operation we call cooking. It is, of course, precisely these products that the scientific community scrutinises when determining the safety of irradiated foods.

Interestingly, in an article, dating back to 1999, called ‘Scientific answers to irradiation bugaboos’, for 21st Century Science & Technology magazine, Marjorie Mazel Hecht has this to say:

The July 1986 report of the Council for Agricultural Science and Technology (CAST), which reviewed all the research work on food irradiation, defined unique radiolytic products “as compounds that are formed by treating foods with ionizing energy, but are not found normally in any untreated foods and are not formed by other accepted methods of food processing.”

The report states that “on the basis of this definition no unique radiolytic compounds have been found in 30 years of research. Compounds produced in specific foods by ionizing energy have always been found in the same foods when processed by other accepted methods or in other foods” (Vol. 1, p. 15).

This slightly contradicts the factsheet put out by Idaho University’s Radiation Information Network, which acknowledges the existence of such products while insisting on their nugatory nature:

Scientists find the changes in food created by irradiation minor to those created by cooking. The products created by cooking are so significant that consumers can smell and taste them, whereas only a chemist with extremely sensitive lab equipment may be able to detect radiolytic products.

Needless to say, alarmists thrive on these contradictions. So what evidence is there of mutagenic irradiation byproducts? Well, there are radiolytic byproducts of fatty acids in meat, called alkylcyclobutanones (2-ACBs), first detected a few decades ago, and the research done on them seems to be so far inconclusive. A book entitled Food Irradiation Research and Technologythe second edition of which was published last year, states that ‘knowledge about the toxicological properties of 2-ACBs is still scarce’, and that ‘it may be prudent to collect more knowledge on the toxicological and metabolic properties of 2-ACBs in order to quantify a possible risk – albeit minimal.’ The book describes a number of studies on rats and humans, going into more detail than I can comprehend, but the results have been difficult to interpret and generally not easily replicable in other studies, indicating very minute and hard-to-measure effects. No doubt such studies will be ongoing. As far as I know, 2-ACBs are the only products about which there is any concern.

What is obvious though, in looking at the research material available online, is the difference between the caution, skepticism and uncertainty of researchers compared to the adamantine certainty of such critics as the Center for Food Safety.

But what about polyploidy? Polyploid cells contain more than two paired sets of chromosomes. Eukaryotic cells, those of multicellular creatures, are diploid (two sets), and prokaryotic, bacterial cells are haploid (one set). Polyploidy is regarded as a chromosomal aberration, common in many plants and some invertebrates, but relatively rare in humans. However it is present in humans, and the percentage varies from individual to individual, and within individuals from day to day and week to week, depending on a range of factors including diet, age, and even circadian rhythms. Levels of up to 3-4% in human lymphocytes have been found in healthy individuals, though some researchers have claimed much higher percentages, in liver cells. The overall finding so far is that fluctuations in polyploidy are the norm, and no clear correlation has been found so far between these fluctuations and health profiles. It seems that the biological significance of polyploidy isn’t known.

Critics of irradiation have been going on about polyploidy and other mutations supposedly caused by irradiation for decades, and unsurprisingly, some are fanatically obsessed with the issue, accompanying their rants with long reference lists, mostly from like-minded activists. However, the text Safety of irradiated foods, 2nd edition discusses polyploidy in some detail, with particular reference to a study of malnourished Indian children fed irradiated wheat, a study regularly cited by anti-irradiation activists. It turns out that there were many problems with the study. First, not enough cells were counted to validly pinpoint an effect, such as a change in diet. Secondly, polyploidy is notoriously difficult to detect – superimposed diploid cells can be easily mistaken for polyploid cells under a microscope (in fact when two independent observers looked at the same microscope slides, one found 34 polyploid cells, the other found 9). Further, the study only gave group results rather than individual results, so it wasn’t possible to know whether the polyploidy was restricted to one or two individuals rather than spread over the group. Another problem was that the reference or control group was found to have no polyploidy at all, a very strange finding given that other researchers always found some degree of polyploidy in their subjects, regardless of irradiation or other effects. In fact, the study was so poorly written up that it’s impossible to replicate – for example the exact diet given the children wasn’t described. How was the wheat fed to the children?. Presumably it was prepared in some way, but how? The omission is crucial. The study also didn’t take into account the effect of malnutrition itself on chromosomal abnormalities. And so on.

You get the picture, and it’s the same with other claims about mutations and carcinogens. Every time you look into the claims you find the same problems that no doubt other scientific watchdog organisations have found – poorly conducted studies that either can’t be replicated or haven’t survived replication. That, of course is no reason for complacency, and at least the activists can assist, in their sometimes muddle-headed ways, in improving our knowledge of 2-ACBs, polyploidy and other biological effects, just as the creationists who bang on about a lack of transitional forms, or ‘irreducible complexity’, help us to focus on refutations, clarifications and further evidence.

Finally, food irradiation, while clearly not the zappo-horrorshow that activists are determined to make it, doesn’t replace proper handling techniques and a good instinct about food quality. The fact is, though, that it does increase shelf life, and is a useful tool in our increasingly global economy, where food is shipped from here to there and everywhere, in season and out. If you prefer to eat locally, with fresh and seasonal produce, fine, and we can argue about the sustainability of that approach on a worldwide scale, but let’s none of us pretend that food irradiation is other than what it is. Let the evidence, properly evaluated, be your guide.

Written by stewart henderson

January 14, 2014 at 12:09 pm

‘organic’ food – the greatest scam in the west

with 12 comments

vegg1

foison or poison?

 

[there is a] fashion to talk as if art were something different from nature, so that things artificial should be separated from things natural, as differing totally in kind… Things artificial differ from things natural not in form or essence, but only in the efficient.

Francis Bacon, De Augmentis Scientiarum, 1623

Someone at work offers me some food, from a cooking class she teaches. She describes it as very healthful, ‘and organic too’, she proudly confides. ‘Well of course, it’s organic, it’s food,’ I mildly reply. ‘Well, yes, but you know what I mean,’ she says.

Unfortunately, I did know what she meant. She meant ‘organic’ in the cheap, shallow, duplicitous, marketing way, not in the deep, scientific way.

And so I begin a piece that is long overdue, and which, I’m sure, will not win me any friends, assuming anybody reads it at all.

‘Organic’ food has been getting my goat for a few years now, and it’s time I laid out my objections based on the evidence I’ve accumulated over the years, while at the same time looking again at the evidence, just in case there’s something redeeming about this labelling and marketing practice that I’ve missed.

First, though, I’ll talk about marketing, which is the real focus of my ire. The term ‘organic food’, as so many people have pointed out, is tautologous. All food is organic, that is an unarguable, scientific fact. So it takes a deal of hubris, and, I reluctantly admit, a deal of marketing genius, to be able to sell a product and a process intended, quite deliberately, to cast doubt on the health and nutritional value of 99.999% of the food we eat. This is the scam of all scams, and what’s more, it has been entirely successful. Usually when we think of scams, we think of those who got caught – the Bernie Madoffs and Jeff Skillings of the world, the bad and the blameworthy who make us feel better for not being like them. Their scams are over, lessons learnt, systems tightened, vigilance heightened, but there’s no end in sight for the organic food scam. It’ll be with us for as long as the words ‘toxic chemicals’ have currency, and that’ll be around the twelfth of forever. What’s more, there’s no ‘body’ to blame, no obvious perpetrator or mastermind. In that way, and in more than a few others, it’s a bit like religion. 

I note that most people I know who swear by ‘organic’ food are also opposed to GMOs, suspicious of mainstream medicine, and dabblers in various pseudo-scientific approaches to health and well-being. They certainly place more value in ‘the fruits of the earth’ than the products of the lab. This article of faith has been labelled ‘the naturalistic fallacy’ by sceptics, though philosophers might quibble about that – as would I, having struggled over many years with that particular concept, introduced by philosopher George Moore more than a century ago. Probably better to label this way of thinking as ‘the appeal to nature’. In any case, it’s certainly an example of fallacious reasoning, as the insightful Francis Bacon was one of the first to point out.

My many qualms about the ‘organic’ food movement have been reinforced by a listen to the ever-reliable Brian Dunning’s Skeptoid piece on the subject, and I’ll use that as the basis, or at least the starting point, for this post. In fact, you might well be better off listening to Dunning’s analysis, which will doubtless be more comprehensive and concise than mine. I’m mainly writing this to get the information and the understanding of the issues more clearly lodged in my head.

The generally understood scientific term for an organic compound is one that’s produced by living entities. Chemically, it’s a carbon-based molecule with a carbon-hydrogen bond. Coal is an organic compound, and so, interestingly, is plastic. If the term ‘organic’ is used in any other way, you should be sceptical.  My scepticism compels me to use the term ‘organic’ food, with scare quotes, to highlight this dubious use.

In order to be certified ‘organic’, food and agricultural products must be produced under a set of guidelines which vary from country to country, and which are regulated in different ways in different places. This Wikipedia article provides some of the guidelines common to most western countries:

  • no human sewage sludge fertilizer used in cultivation of plants or feed of animals[1]
  • avoidance of synthetic chemical inputs not on the National List of Allowed and Prohibited Substances (e.g. fertilizer, pesticides, antibiotics, food additives, etc.), genetically modified organisms, irradiation, and the use of sewage sludge;
  • use of farmland that has been free from prohibited synthetic chemicals for a number of years (often, three or more);
  • keeping detailed written production and sales records (audit trail);
  • maintaining strict physical separation of organic products from non-certified products;
  • undergoing periodic on-site inspections.

So let’s look at the first three of these, which, presumably, are key to producing goods superior to, or healthier (and tastier) than goods that don’t earn the ‘organic’ label.

The issue of sludge fertiliser and its potential dangers isn’t really an ‘organic’ food issue, it’s one for any agricultural product. If you use sludge fertiliser, and it causes contamination to humans or animals, obviously there will be consequences for your business and yourself, whether you’re trying to produce ‘organic’ food or not. The ‘freedom from sewage sludge’ label that ‘organic’ foods are presumably entitled to display appears to be meaningless unless non-‘organic’ producers are all using the stuff. And even if they were, the issue is one of contaminants, not sewage sludge per se. I don’t know if this is an issue in Australia, but there is no evidence, out of the USA, that anyone is being contaminated by non-‘organic’ foods. No matter what the complexities of applying sludge in farming – organic or inorganic, treatment methods, etc – it is irrelevant to the ‘organic’ food issue. It appears to be used for ideological reasons, to hint that, somehow, somewhere, the use of untreated or improperly treated sludge is slowly killing us.

The second guideline, which for some reason incorporates the first guideline, rendering that guideline superfluous, is the key guideline to understanding the psychology of ‘organic’ food, and the ‘appeal to nature’ fallacy upon which it’s based. ‘Organic’ food producers must not use ‘synthetic’ fertilisers or pesticides ‘not on the National List of Allowed and Prohibited Substances’, in other words nothing synthetic of any kind.

‘Organic’ producers and marketers like to promote their products as fertilizer and pesticide free. This is complete bullshit. Virtually all agricultural products are subject to pest infestation and this needs to be dealt with, one way or another. Methods also need to be employed to enrich the soil, to render it more fertile. The only difference between ‘organic’ producers and the rest is that ‘organic’ producers are constrained by their anti-science ideology. Synthetic fertilizer, for example, involves the production of the key nutrients for plant growth – nitrogen, potassium and phosphorus – on a commercial scale. ‘Organic’ farming involves the same nutrients, but delivered the hard way, through fish and bone meal, earthworm castings and the like. The only difference is that these materials are more costly and less efficient, as they deliver a much lesser and more variable load of the nutrient per volume, and are thus less straightforward to use accurately and systematically, and are far costlier to transport. The use of synthetic fertilisers, as I’ve pointed out many times, has, with the improvement through hybridisation of particular grains and fruits, increased crop yields by ten times and more, and has saved the lives of millions since their introduction in the sixties.

But the real point here is the duplicity of labelling synthetic fertilizer, which is able to isolate and concentrate the required nutrients in the most efficient way, as ‘chemical’ (with the implication that it just might be toxic), as if the fertilizers used in ‘organic’ farming are somehow free from chemistry.

The third guideline mentioned above really shows how committed the ‘organic’ marketers are to scaring people about conventional farming. There is no need to keep conventional farmland free from ‘prohibited synthetical chemicals’ in order to use it for ‘organic’ farming. I wonder what is meant by ‘prohibited’ here? If they’re prohibited by government authorities, then of course you shouldn’t use the land – but then why would any farmer use such substances, thus poisoning her own produce? If they’re prohibited solely by ‘organic’ regulations, then they’re simply ideologically driven, arbitrary, and a product of the ‘appeal to nature’ fallacy.

As Dunning points out, ‘organic’ products are perfectly healthy and safe, but there’s no reason to believe they’re healthier and safer than non-‘organic’ products. I personally prefer to avoid eating too many processed food products because I think it’s better for our bodies to expend energy on the process of digestion, and because many processed foods have added sugar which our bodies don’t need and which can cause problems. I think there’s a fair amount of good scientific evidence for this approach to diet. I’ve not as yet encountered any scientific evidence for the benefits of ‘organic’ foods, except that they’re generally unprocessed and vegetarian, which is mostly good (don’t forget, though that a diet of potato chips is also vegetarian).

A perhaps more subtle, and superficially more cogent argument for ‘organic’ foods is the environmental argument. Okay, so conventional food isn’t poisoning us or giving us cancer or heart disease, but you gotta admit that it’s unsustainable. ‘Organic’ food really cares for the soil, it’s based on a deep connection with nature, a respect for the land, it gives as good as it takes, it’s about long-term sustainability. Conventional farming is, by contrast, instrumentalist, exploitative, impersonal, short-term, destructive etc etc.

This is a simplistic and ideological claim, not evidence-based. Firstly, let’s look at how conventional farming obtains its three key nutrients for enriching the soil. Nitrogen is, of course, freely available from the atmosphere and infinitely sustainable. Phosphorus is mined from phosphate rock, of which we have reserves to last centuries. Potassium comes from ancient ocean deposits, of which we have millenia of reserves. Of course these reserves are finite, so seawater extraction is considered a viable alternative, for both potassium and phosphorus. As Dunning points out, this creates a sustainable cycle as plant matter and farm runoff returns to the oceans, but ‘organic’ certification, at least in the US, doesn’t allow sustainable atmospheric and seawater extraction. ‘Organic’ chemical fertiliser can only be sourced from animal waste and other recycled resources, using criteria which are ideological rather than scientific, and so more or less arbitrary. Further, these resources can’t be marshalled in sufficiently commercial quantities to feed large populations, especially in developing countries where there just isn’t the infrastructure to make fertilisation under ‘organic’ guidelines viable on a commercial scale. ‘Organic’ farming is a distinctly western, middle class ideology.

It’s also insulting to conventional farmers to suggest that they’re more exploitative and short-term in their use of their own land. This goes as much for multinational agricultural concerns as for individual farmers. Both groups are interested in long-term viability, for obvious reasons. Crop rotation and other forms of long-term soil management have long been practised by conventional farmers, who must naturally balance these with other production concerns. This is surely grist for the mill for all agriculturalists, as they would wish to reduce the cost of applying fertiliser or herbicides wherever possible.

Returning to the pesticide/herbicide issue, it’s often harder, and more expensive, for ‘organic’ farmers to find ‘natural’ or plant-based chemicals to use instead of synthetic products, and these costs must needs be passed on to consumers. The synthetic products have, of course, been passing health and safety checks for decades. One such chemical, rotenone, a colourless, odourless ketone found in the seeds and stems of a number of plants including the jicama vine, has in recent years been all but abandoned, due to connections found between its use and the incidence of Parkinson’s Disease among farm workers.

I could go on, but hopefully you get the picture. I’ll end, as I began, with the use of language. There are plenty of organic entities, to use the word in its right way, that are poisonous to humans – be they berries or bugs, frogs or sea creatures. A fine example is the fugu fish, with its deadly poison, tetrododoxin, of which quantities are found in the skin, the skeleton, the intestines, the ovaries, and above all the liver. Eaten usually as sashimi (ie raw), it must be prepared by rigorously trained chefs, and even then you can never be sure – which seems to be essential to its charm as a delicacy. To quote from this travel advisor:

Tetrododoxin does not cross the blood-brain barrier, so the victims remain fully conscious while their central nervous system gradually shuts down, first producing dizziness and incoherent speech, then paralysing the muscles. This can lead to asphyxia, and possibly death. (There is no antidote for fugu poisoning).

Here’s one example, among many others, in which awareness of the ‘appeal to nature’ fallacy can be more than a bit useful. Bon appetit.

Written by stewart henderson

July 29, 2013 at 1:36 pm

Monsanto and GMOs are not the same

with 2 comments

scary protesters

scary protesters

The other day on the tram to the city I noticed people congregating on the steps of Adelaide’s parliament house, many of them holding green balloons. Always fascinated by demos, and usually well up on the news, I struggled for reasons as to what it was all about. The only ‘special day’ I knew of was for indigenous Australians – National Sorry Day on Sunday May 26 – but this was a Saturday, and the green balloons suggested something more environmental. I continued on into the city for a spot of lunch and window shopping, but then found presumably the same demonstrators wending their way through Rundle Mall, behind a megaphone-wielding leader and parroting after him three clear slogans – ‘No Monsanto’, ‘No GMOs’ and ‘No human experiments’.

A lot of thoughts went through my head at hearing these chants – I’m a very excitable fellow – but among them was this. Ages ago I began a five part series of posts on the subject of genetically modified foods, which I based on a piece of writing in a cookbook, The urban cook, by ‘celebrity chef’ Mark Jensen, who plies his trade at Sydney’s Red Lantern restaurant. The first four parts were written and posted here, here, here and here, but I never got round to finishing the fifth part, based on the last paragraph of Jensen’s little anti-GMO critique. So I’ll finish it now with reference to the demonstration the other day, which I’ve discovered was targeted specifically at Monsanto.

So now to look at the final of Mark Jensen’s five not very provocative paragraphs on GM plants, and to summarise my own take on the controversy.

In the United States, some farmers who use GM crops have had to resort to physically ripping horse weed [an example of a herbicide-resistant ‘super weed’] out of the ground by hand. Farmers who grow GM crops use herbicides that are designed to kill the weeds but leave the crop healthy. In this case, the GM food crop has remained resistant to the herbicide, but unfortunately the weeds have adapted to resist it as well. If the farmer uses another brand of herbicide to kill the weeds he runs the risk of killing the food crop. This situation is frightening and the only way to stop the cycle of stronger and stronger chemical use is to do just that: STOP IT. This is a classic example of man trying to circumvent nature and only succeeding in making matters worse.

The thesis in this paragraph is simple enough – the use of GM crops creates herbicide-resistant super-weeds, which will lead to the use of stronger chemicals and higher volumes of chemicals in order to control them. So is this true, and how much of a key factor are GMOs in the production or over-production of chemical herbicides and/or pesticides?

First, the horseweed problem. This weed’s growing resistance to glyphosate, the herbicide patented and marketed as Round-up by Monsanto [though its patent ran out in 2000], has been a problem for US agriculturalists for over a decade now. Glyphosate is the most commonly-used herbicide in the USA. It should be pointed out that it was first marketed in the seventies, well before any GMOs came on the market. Round-up Ready soybeans, engineered to be resistant to glyphosate, were not released into the market until 1996. According to this scientific report:

Common to all known cases of glyphosate-resistant horseweed is the frequent use of glyphosate for control of all weeds, little or no use of alternative herbicides that control horseweed, and long-term no-tillage crop production practices

That’s to say, monocultural farming practices and the one silver bullet approach to weed control seem to be the culprits in this resistance problem. The report argues that effective control of horseweed simply involves the adjustment of management strategies. Increased tillage, where possible, is recommended, and for well-established weeds, a three-way mixture of herbicides, including glyphosate, appears to fix the problem. The researchers name the herbicides to use, and the relative quantities. I would be very surprised if they hadn’t taken into account the possibility that such a mixture might harm the crop. The impression I get from this particular report is that we need not get too alarmed.

The use of herbicides will continue to be a feature of agriculture as long as monocultural farming is required to feed the world’s vast population. This type of farming has its problems – as does every other type of farming – but there’s no doubt that it has led to enormous efficiencies in terms of land use and crop yields. Monoculture was a key component of the ‘green revolution’ that began in the sixties and led to an unprecedented rise in crop yields, rescuing millions of people from the prospect of starvation. And the revolution isn’t over yet.

This is the point. The issues of weed resistance, difficult though they sometimes are, are minor by comparison to the benefits of high-yielding, intensively grown crops in effectively feeding our populations – regardless of whether those crops have been genetically modified in the old way through experimental hybridisation, or in the new way by means of gene splicing. Meanwhile we will continue to work on the weed resistance problem, which will no doubt involve a modification of current monocultural practise (among other strategies), rather than its abandonment. The situation is not frightening, it’s an ongoing problem, as it has long been, but it is by no means out of control. We need to be alert but not alarmed, and there continues to be a lot of research devoted to this problem. From what I’ve read, it’s not a losing battle.

GM foods are here to stay, and it seems to me that Australians should be given the choice of consuming them. Currently very little GM food production occurs in Australia, and only a limited amount is imported – mainly soya from the US. All GM food must be labelled as such here, but it’s highly likely that much is slipping through unlabelled, in imported cereals, chocolate and other foodstuffs. Next year marks the twentieth anniversary of the introduction of GM food in the US, the first country of use. Other major producers are Brazil, Argentina, Canada, China and India. As yet no health problems have been definitively associated with GMO consumption.

As to the demonstration the other day, its slogans and frankenfood banners do nothing to provide enlightenment on this issue. It gives the distinct impression that being opposed to the monopolistic practices of Monsanto means being opposed to all GMOs and all GMO research, as well as, bizarrely, to all human experiments! Presumably by chanting against human experiments they’re trying to make a link between Monsanto’s products and the risks to humans who use them, but to me, it’s unlikely that passersby would be able to make that connection – quite apart from the fact that Monsanto no longer has a monopoly on glyphosate. It goes without saying that human trials – of all new pharmaceuticals or medical procedures, etc, are not only vitally important, they’re mandatory, as they should be. Without ‘human experiments’ no new developments would ever get the chance to display a human benefit.

As always, what’s needed here is education and informed debate, not silly slogans.

For an informative account of the current situation with genetically modified food, especially in relation to Australia, check out this fact sheet from Australia’s Chief Scientist. Don’t get angry, get educated.

Written by stewart henderson

May 28, 2013 at 11:21 pm

worms!

leave a comment »

worms

Nobody loves me, everybody hates me, thank I’ll go and eat worms

Long ones short ones fat ones skinny ones

Worms that squiggle and squirm

That’s called a kids’ song, or a campfire song, and in some versions the words are different, but that’s how I learned it in the wolf cubs as an eight-year-old, and the words often come back to me when, as quite often happens, I find that nobody loves me and everybody hates me. This is the case at present so I was heartened by watching a doco this morning on worms, and I thought I’d cheer myself by writing about them rather than eating them.

I’m talking earthworms here, just to narrow things down. The longest worm that we know of (not an earthworm) is the bootlace worm, Lineus longissimus, of the phylum Nemertea, specimens of which grow as long as 55 metres – though they’re stretchy, so that might be cheating. As for earthworms, Australia’s regarded as a hotspot of wormy diversity, according to wormologists, with the giant Gippsland earthworm, Megascolides australis, coming in as one of the biggest at up to 3 metres, and over an inch in diameter. You could base more than a couple of hefty meals on a critter that size, but sadly they’re a threatened species, another casualty of human encroachment on habitat. In fact, a great many of Australia’s 1000 or so known native earthworm species are in the same position, but for obvious reasons they don’t get the same attention as bilbies and potoroos.

As every gardener knows, worms are much valued for the way they transform the soil, providing new opportunities for the growth and development of plants. They also aerate the soil – letting in air, releasing carbon dioxide – with their burrowing activities. They don’t simply become two if they’re cut in half, though they can regenerate a chopped-off tail. They’re delicate and can be easily broken if pulled at, and in fact they have tiny gripping hairs, called setae, all over their bodies which makes them especially hard to pull out of the ground, as if you’d want to. Like me, they’re hermaphrodites (I think that’s why everybody hates me) and they breed by stretching alongside each other and exchanging sperm, a process that often lasts for many hours.

Okay, I’m not a hermaphrodite, but I may as well be, and a two-headed one at that.

Worms make great food for birds, platypuses and the occasional intrepid toddler, and their excreta, aka castings, the end-product of incessant organic digestion, is taken up by plants, and is full of such goodies as phosphorus, nitrogen, calcium and magnesium. They like and need moisture, and in fact the giant earthworm can be detected by the underground squelching and gurgling created by their activities.

The basic worm anatomical structure, whether you’re talking land or sea, has been around a very long time, and obviously has proved very effective and enduring. It’s believed that the first-ever vertebrate creature (according to current knowledge), the ocean-living chordate Pikaia gracilens, incorporated the beginnings of a backbone into its worm-like body some 500 million years ago. That makes worm-eating a form of cannibalism. In fact, eating itself is a form of cannibalism and we really should stop.

Let’s look at how earthworms get around. The direction of their movement is a response to light and to soil chemistry as it impacts on skin cells. They move by expanding and contracting their muscles, anchoring themselves as they go with their setae, which they put out and retract as they go. Skin secretions help to bind the soil around them, easing their burrowing passage. Like us, they move a lot more sluggishly (probably not a good choice of words) in the cold weather.

So, that’s it for worms, for now. I’ve opened a few cans of them in my time, but I’ve always been reluctant to examine the contents. See how I’ve changed.

a dish of mopane worms - a fave from Zimbabwe

a dish of mopane worms – a fave from Zimbabwe

Written by stewart henderson

January 30, 2013 at 10:09 am

GM salmon: what to think?

leave a comment »

a fish more fishy than most?

a fish more fishy than most?

I get regular emails from worthy folks asking me to sign some petition or other relating to some political or social injustice or outrage, and sometimes I sign, but mostly I pass because I don’t the details and haven’t the time or energy to research the bonafides. Rarely, though, do I sit up and think ‘that’s not quite right’. That’s what happened when I received an invitation to complain about the USA’s new ‘fake salmon’ or ‘frankenfish’:

Attack of the Frankenfish

The US is about to treat the world to the first genetically modified meat: a mutant salmon that could wipe out wild salmon populations and threaten human health. Unless we stop it, this Frankenfish could open the floodgates for biotech meat around the world. Click below to build 1 million voices to stop it: Sign the petition.

Sounds pretty scary, but I’m well aware that, like climate change, the GMO debate tends to divide along politico-ideological lines, which makes me very keen to get my head out of the rhetoric and into the science. So let’s investigate further. By the way, for a very useful insight into the fraught domestic (US) politics of this issue, this article is a must-read. It comes from an organisation called Genetic Literacy Project, ‘where science trumps ideology’ – a good place to start if you want to inform yourself about the science.

The USA’s FDA gave its approval to genetically modified ‘AquaAdvantage’ salmon on December 26 last year. It’s likely that the date – buried in the midst of the holiday season – was deliberately chosen to avoid controversy as much as possible. This was indeed a landmark decision, the first GM animal ever approved for human consumption, and the forces opposing this development are loud and strong. They include not only the anti-GM organic food producers and consumers but the Alaskan fishing industry, which believes it could be wiped out by these new fast-growing farm fish.

The technology is hardly brand new, involving the modification of Atlantic salmon with a Chinook salmon growth hormone as well as genetic material from a large eel-like fish called an ocean pout, enabling it to reach maturity at a faster rate. One anti-GM site has described the increased rate as 30-fold, but a probably more accurate view comes from this essay, which claims only a 4-fold increase, based on the developer’s own assessment. However, this (clearly anti-biotech) site claims that AquaAdvantage’s claims about faster growth are completely bogus, and that ‘two major commercial growers have said that their salmon grow as fast as or faster than GE salmon’. Trying to arrive at the truth here is a pretty thankless task.

The process of approval has taken years, and the delays appear to have been more politically than scientifically motivated. The first viable salmon carrying these modifications was created in 1989, and the altered species entered the federal approval process in 1995, and as one commentator says, they’ve been swimming upstream ever since. The FDA released a preliminary FONSI (Finding Of No Significant Impact) report on the salmon back on May 4 2012, and I’m not sure as yet why it took another 7 months for the final approval (which is still subject to public comment and feedback). On the ‘threat to human health’ claims of the petitioners, the FDA had this to say:

With respect to food safety, FDA has concluded that food from AquAdvantage Salmon is as safe as food from conventional Atlantic salmon, and that there is a reasonable certainty of no harm from consumption of food from triploid AquAdvantage Salmon. Further, FDA has concluded that no significant food safety hazards or risks have been identified with respect to the phenotype of the AquAdvantageSalmon.

By the way, the tern ‘triploid’ here means, essentially, that the salmon have been rendered sterile through gene manipulation. They’re normally diploid.

Should we take the FDA’s word for all this? What are the health concerns of the anti-GM lobby? Well, let me provide a list, garnered from a few anti-GM sites.

1. Farmed fish swim in their own waste, and require regular doses of antibiotics to stay healthy (obviously this is an argument against farmed fish in general not just farmed GM fish).

2. The GM salmon are less healthy than wild or regular farmed Atlantic salmon. Studies have shown that they contain lower levels of heart- and brain-healthy omega-3 fatty acids than either form of regular salmon. These fish are also notably deficient in certain vitamins.

3. There’s a big concern that genetically modifying salmon could increase the incidence of seafood allergies among the public.

Well, actually, that’s it. There are other, genuine if possibly overblown, concerns about fish, in spite of triploidy, escaping the confines of the farm and interbreeding with other salmon, but this doesn’t directly affect human health. All we really have is the possibility of increased allergenic reactions and the possibility that we won’t get as many nutrients from these fish as from regular fish – hardly a scary issue. Oh and of course there’s the unstated but always looming notion that frankenfish or frankenfoods generally will create monster diseases/mutants that we’ll be unable to contain and which will wipe out human life as we know it, but I won’t address that here.

GMOs and allergies

One of the major consequences of introducing a new gene into an organism’s genome is the production of a new protein. Every protein has some possibility, however theoretical, of bringing on an allergic reaction,so it’s undoubtedly important to monitor responses to new proteins. And it’s true that no amount of monitoring of a new protein’s allergenic potential, before a product containing that protein is released to consumers, will be absolutely foolproof. However, it’s one thing to say that we can’t be sure there won’t be isolated cases of allergic reactions, and it’s altogether another thing to assume that allergic reactions will inevitably result from GMOs. Certainly in countries that have taken to GMOs – the USA for example – we’re not seeing any dire consequences. More importantly, perhaps, we’re learning a lot more about proteins and allergies, partly as a result of the testing and monitoring of GMOs, than we ever knew before. The database on allergens has become more extensive and detailed.

By studying the characteristics of known allergens, researchers have come up with a profile or set of criteria, common to these allergens, that they can test new GMOs against. In fact, because GMOs involve an alteration that produces a handful of new proteins at most, they’re much easier to screen in this way than a new type of fruit which may contain any number of new and generally less predictable proteins. The introduction of kiwi fruit to new markets resulted in allergic reactions, though only some years after they were introduced, thus underlining the need for long-term monitoring of all sources of unfamiliar proteins.

GMOs are subject to numerous rigorous reviews before being released to the public, far more than occurs with organic foods, and if there’s the slightest whiff of a potential allergen, they won’t be released. And not all GM foods produce new proteins, because the modification may involve simply switching off a ‘problem’ gene by incorporating a reversed copy of it.

Is there something especially dangerous about GM salmon, or seafood in general, and allergies? Well, very recently, Consumers Union, apparently a US-based consumer advocacy organisation, blasted the FDA for not adequately researching the potential for the fish to cause allergies.

FDA has allowed this fish to move forward based on tests of allergenicity of only six engineered fish—tests that actually did show an increase in allergy-causing potential,” stated Michael Hansen PhD, Senior Scientist with Consumers Union.

A more detailed critique of the FDA’s decision and its internal processes, from an organisation called Food and Water Watch, ‘a tireless champion in the fight to preserve our right to the untainted fruits of the earth’, is very much worth a read, as it addresses sample sizes, the nutritional content of the GM salmon, the lack of fisheries and environmental expertise within the FDA, the commercial viability of the product, and concerns about carcinogens and allergens. If you’re looking for a coherent and articulate presentation of the anti-GM salmon argument, you’ll find it here.

My mind remains open on the matter. The anti-GM lobby can only speak of potential dangers, though they shouldn’t be dismissed. However, the claim that this FDA decision, not yet final, ‘opens the floodgates’ for GM seafood and livestock sounds pretty unconvincing considering the long, winding upstream journey of AquaAdvantage salmon.

One thing I will say though, is that GM products should be labelled as such. The fact that this doesn’t occur in the USA amazes me considering the strength and independent-mindedness of consumer groups there. Even in Australia GM labelling is limited at best. Detailed labelling of all foods is, IMHO, essential to critical evaluation and consumer choice.

Finally, what always gets me about the people opposed to these developments is the anti-science bias. It may be the case that these salmon haven’t been tested rigorously enough (I’m sceptical though), but the call is usually not for more rigorous testing, it’s for abandonment of the whole enterprise. Similarly the negatives are highlighted far more than the positives, and solutions to those negatives are dismissed. And the unholy alliance between environmentalists and protectionist politicians concerned to maintain what is surely an unsustainable wild fishing industry strikes me as puzzling if not bizarre.

Written by stewart henderson

January 26, 2013 at 10:58 pm

exercise, health, skepticism and my personal journey

leave a comment »

benefits-of-exercise-2

‘Many of the most important benefits of exercise lie hidden deep inside your body.’ Michael Mosley

When it comes to diet and exercise, everyone seems to be an expert, and even a crank, to judge from many of the comments left on the SBS on demand site for its recent doco, ‘The Truth about Exercise’, presented by Michael Mosley. A scarily large number of these comments are of the ‘that’s all garbage, now I’ll give you the real lowdown’ variety.

And yet, considering how unique each person’s body and its requirements seems to be, maybe it’s not so surprising that general claims get up the noses of so many particular people.

So it’s good to be sceptical, though I was a bit surprised at the degree of scepticism about this doco when the subject came up recently – admittedly at a sceptics’ meet-up. So I’ve decided to take a closer look.

The program looked at a variety of surprising research findings, indicating, among other things, that your genes determine to a large degree whether intensive exercise will confer a benefit. There’s also controversial and counter-intuitive evidence that infrequent, sharp bursts of exercise, which get the heartbeat up and briefly racing, can provide a greater benefit than regular daily gym exercise. Offhand, I can think of an evolutionary basis for this finding, in that we evolved to combine a relatively indolent, social lifestyle with occasional energetic bursts to catch prey or run from predators. But what would I know?

Early on, we’re given a simple and salutary lesson about exercise and weight loss. Mosley, the program’s host and chief guinea pig, is monitored by a respiratory device on a relatively gentle [6mph] run around a training track. The device measures the amount of oxygen and carbon dioxide exhaled. Looking at the ratio between the two gases enables us to estimate the amount of fat and carbohydrate, or calories, being burned, apparently.

Mosley was measured as burning some 16 calories per minute during his run. It was then pointed out to him that, at that rate, it would take him 55 minutes to burn off the calories consumed in a cappuccino and a blueberry muffin [which he proceeded to consume after his run], plus a banana. Sounds like bad news.

Some questions about this. How close to average is Mosley’s calorie-burning level at a speed of 6mph? If I did the same run, would I burn off more calories, or less? A lot more? A lot less? How wide is the range? And do you burn off less calories if you’re much fitter? How much less?

The basic lesson here, though, is, if you want to lose weight, eat less. Exercise isn’t likely to do it for you, but it will certainly confer other benefits.

The next section of the program looks at fat levels in the blood. Mosley is treated to a hearty Glasgow breakfast of baked beans, sausage, bacon, black pudding [I think], some sort of creamed egg concoction [I think] and toast. As we’re told, the fat in this meal will be processed though the gut into the bloodstream, inducing metabolic processes which will determine the amount of fatty deposits forming on the walls of the blood vessels.

Four hours after the breakfast, a blood sample is taken and placed in a centrifuge to separate out the fat. This is compared to a blood sample taken before the breakfast, and we see that the amount of fat in the post-breakfast sample is about double the pre-breakfast one. Note that this is one sample – double the amount in the whole bloodstream, and you’re talking quite a load of fat.

As the Glasgow researcher, Dr Jason Gill, points out though, a key factor here is where this fat ends up. Sub-cutaneous fat is much less damaging than visceral fat, fat around organs such as the liver and pancreas. Unfortunately, many of us, like myself, don’t know where our fat is going, or what percentage of visceral fat we have. Mosley does know, however, that his percentage of visceral, or abdominal fat is disturbingly high. A high load of this kind of fat makes you susceptible to insulin resistance and type 2 diabetes and other problems. Mosley’s father suffered from type 2 diabetes, adding to his disturbance. How much of a part do your genes play here?

Mosley is given another big Glasgow breakfast the next morning, but this time he takes a long but seemingly leisurely walk the night before (Mosley describes it, though, as ’90 minutes of pretty hard walking’). This walk should have triggered the production of an enzyme that in turn should affect the way this second breakfast is metabolized.

Again, Mosley is blood-tested four hours later, and although the interaction is a bit confusing to me here, it seems that the sample this time contains about a third less fat than the one the day before.

More questions. We don’t know what Mosley did the night before he had his first breakfast, so we can’t compare it to the exercise of the night before his second breakfast. We also don’t know, on either occasion, what he did in the four hours between eating his breakfast and being tested.

In any case the fat in the blood vessels has substantially reduced, because it has been taken up into the muscles where it will be mostly burned off.

This is a remarkable finding, and the key enzyme or protein is lipoprotein lipase, or LPL. But most people would begrudge, or simply not have time for, 90 minutes of solid, swift walking of an evening. Any alternatives?

Well, British government guidelines make a general case for 150 minutes of moderate exercise per week, or 75 minutes of more vigorous exercise – and, unsurprisingly, most of us don’t manage this.

So, Mosley visits Prof Jamie Timmons in Nottingham whose team is looking at exercise differently, seeking to fit exercise regimes to particular individual needs. These researchers are looking at the wide variation of response to and benefit from exercise. They conducted a four-year study with a thousand subjects who exercised 4 hours a week for 20 weeks. Not surprisingly, average fitness improved, but it was the variation within the range that was the focus of the research. They found a spectrum with about 15% being ‘super-responders’, and about 20% at the other end recording ‘no change’. From this research [obviously there’s quite a bit of science missing from the explanation here] they were able to isolate 11 genes. This has further enabled them to devise a genetic test to determine which group a person belongs to, or where he sits on the spectrum.

More questions. So what if you’re one of the no-change types – is there really no benefit at all for them from this exercise schedule? That sounds almost crazy. And if this doesn’t have any effect, what will? The program doesn’t quite deal with this issue. Mosley states that the non-responders will benefit [which is essentially contradictory] but doesn’t say how. Which leads to the question – what exactly is being measured here? Obviously, a response to exercise, but what kind of response? Weight loss? Changed metabolism? Conversion of fat to muscle? Blood sugar levels, blood lipid levels? Sense of well-being?

Presumably it’s a combination of these elements, but the general point is clear – presenting benefits by means of averages doesn’t really help the individual, considering the massive individual variation revealed by this and other studies.

Personalised medicine and personalised exercise based on genetics may be the way of the future, but I wonder how easy, and how expensive it would be for each of us to access our genetic profiles. Of course the host of our program has no problems with that because he gets his genetic tests paid for presumably by the BBC.

Mosley is also tested for a couple of other things. First, he’s given a sugary drink (presumably glucose not fructose – the difference between these two sugars has become something of a dietary issue lately) to measure his insulin sensitivity. Insulin removes sugar and controls fat in the blood, and if there’s a problem with its production or activity you can become diabetic. After the drink, Mosley has his blood regularly examined to determine how effectively his insulin is doing its job. As it turns out, his results are not so good – the blood-sugar level shot up after the drink of course, but it drifted down only slowly to a point just below ‘impaired glucose tolerance’, putting him only just in the healthy range. The plan is to introduce him, and us, to some exercise that might improve his situation.

Before that, though, he has to undergo his second test, to check out his aerobic fitness, also known as VO2 max, with V standing for volume and O2 for oxygen. In other words, maximum or peak oxygen uptake and capacity.

Perhaps amazingly I’ve never heard of VO2 max before, in my fifty-odd years on this planet, but it’s probably all the rage amongst modern-day gym junkies. It’s a measure of heart and lung efficiency at getting oxygen pumping through the body. It’s not really clear what the number measured indicates, but it correlates pretty well with general fitness. The number for Mosley was 37mls per kg, after scaling for body weight. Top athletes get up to 75, and the much less fit are down in the twenties. As someone who’s become quite interested in weight loss, exercise and fitness recently, I’d be very interested to discover my own VO2 max, but as the program shows, people are put through a punishing exercise test to determine the number, which itself could be quite dangerous, if you’re elderly or have heart issues. So this is an issue I’ll come back to as I try to get more info on myself.

After these tests, Mosley’s introduced to the high intensity training (HIT) protocol, which represents one of the most exciting and controversial developments in ‘exercise science’, if there is such a thing. On an exercise bike, he’s asked to do three short (20 second) bursts of give-it-all-you’ve-got cycling, with rests in between. That’s a minute of HIT, to be undertaken 3 times a week – so, 3 minutes a week. Not worth going to the gym for. Actually the principal attraction the gym held for me, during the short period when I regularly attended, was the sight of athletically lissom females. Sadly, I got rid of my exercise bike, reluctantly, a couple of years ago. Now I’ll have to buy another, because I’m definitely keen on this HIT stuff.

So why does HIT work? The science isn’t clear, but it definitely does work, as shown by many labs around the world. This HIT regime is enough to break down the glycogen stores in the muscles – the store of glucose. This is a key signal from the muscle to the bloodstream saying ‘I need more glucose’, which presumably results in the sugars, the calories being sucked out of the blood into the muscular tissue. This sort of thing happens on a low level with any activity, such as simply walking, but HIT sends out this message from a far higher percentage of the muscle tissue than walking or other mild activities. So for those at risk of diabetes, HIT appears to be an excellent approach

HIT is also good for increasing your VO2 max, presumably because it primes the body to expect, every now and then, short sharp bursts of intense effort, as our evolutionary development might have done. As the researcher says, the sense, after only 20 seconds, that you’ve engaged in a thorough-going, lung-bursting, heart-pumping workout, is a good indication of the VO2 max benefits. The benefits of HIT are not immediate, but after about six weeks the effects should become clear.

So Mosley commits to trying HIT for a month or two, and in the meantime he checks out some more research, this time on NEAT, another low-cost, no gym fees way of keeping healthy. NEAT stands for Non-Exercise Activity Thermogenesis, a neat acronym for avoiding sitting around on your butt all day, which many people spend twelve hours or more a day doing. NEAT basically means  the calories you burn in all your everyday activity and movement, apart from deliberate exercise, whether inside or outside a gym.

Mosley is asked by James Levine, of the Mayo Clinic, to put on a pair of ‘fidget pants’ or NEAT underwear, which are ‘wired up’ to register all daily, and nightly, movements. A bit embarrassing, thinks I, if you’re known to sleep alone and you register some suspicious nocturnal rhythms, but hey, if it keeps you healthy… In fact doctors recommend…

The point is that just about any activity will increase your metabolic rate – though I’m a bit sceptical of the numbers Levine throws around here – ‘this guy’s walking slowly, about 1mph, that’s okay though, he’s doubling his metabolic rate, and look that guy’s walking twice as fast, so he’s tripling his metabolic rate..’ Really? Sounds like this is based on averages again, and even at that, I doubt if just doubling your walking speed doubles your metabolic rate. But hey, picky picky, it’s surely all doing some good.

Mosley and two other subjects are to have their daily activities tested via the pants. One works in a busy cafe, the other is a writer, particularly on health issues, who goes regularly to the gym.

The three subjects are measured over a 24-hour period, and the results are presented a bit sketchily – a problem with cramming so much in in an hour-long doco. The cafe worker is described as gold medal material from a NEAT perspective, because she’s constantly active, as her graph shows – but in fact only in the morning. There follows a period of complete inactivity according to the graph, but this doesn’t get a mention. The health writer’s graph is sporadic, with occasional bursts of high-level activity, including a very fast and reasonably long walk from one building to another, which Levine doesn’t seem much impressed by (he simply says at the end that the cafe worker produced impressive NEAT results, while the other two failed, essentially). Mosley’s own results indicated regular but quite low-level movement, which didn’t add up to much. So he did an extra 24-hour session with the fidget pants, this time making a concerted effort to sit less, and to generally be more on the move. Levine tells him that his much-improved graph means that he’s burned off 500 calories more than in the first session, so potentially he could be burning off 500 calories daily.

Scepticism time again. The 500 calories thing is again based on an average. Metabolism varies enormously, and if it’s true that there are super-responders and no-changers when it comes to gym exercise, why wouldn’t it be true for NEAT activity? Also, is it really about calories?

Well, Levine answers that last question, sort of, in the next segment. Regular movement just keeps the system going, in terms of blood sugar and blood lipid levels and various other indicators, in a way that long sedentary hours, followed by a burst of activity, even at a gym, doesn’t. At least that’s what recent research seems to be telling us. It’s the sedentariness, according to Levine, that seems to be ‘the killer’. Sitting around in a chair all day is killing millions, is his stark assessment.

So Mosley continues on his journey among the researchers, while working on his HIT, and improving his NEAT. His next stop is the University of Brighton, where Dr Emma Ross is working on brain activity and fatigue. Mosley is asked to do some cycling in a hypoxic chamber, where the oxygen level is lowered (these are the in thing for pro distance cyclists, who often have to compete at altitude). The chamber shows a 14.2% oxygen level, compared to 21% outside the chamber. The idea is raise the fatigue level more quickly, but also the ‘brain concern level’, if you will. Mosley lasts only a few minutes. The oxygen saturation in his blood drops to 82% – presumably from 100%? The significance of this figure, and its effects, aren’t explained. Immediately afterward, he’s strapped into a chair, has electrodes placed on his thighs and has his leg strapped with a strain guage, to measure his kick strength. First he’s asked to push his muscles as hard as he can, then a trans-cranial pulse is attached to his head. This delivers a magnetic pulse to his leg, and the result of all this isn’t too easy to follow, but it seems as if the brain is communicating with the muscles and telling them not to strain so hard. That’s to say, the brain seems to be in ‘somewhat concerned’ mode, creating a safety margin for your exertion, which can be reduced through awareness and training. By reducing that safety margin, you can improve your overall fitness and health benefit.

We’re nearing the end. Mosley returns to Nottingham to see how his HIT schedule has worked out – though there’s a slight problem, as one expert has noted, in that Mosley has confounded the results by engaging in NEAT and other fitness experiments in the interim. This would tend to enhance the findings.

Never mind, it’s all good, and Mosley found that his insulin efficiency had improved by 23% since his previous test. So it seems that, with a combination of HIT and NEAT, you can’t lose…. Except that the test on Mosley’s aerobic capacity revealed no change, and this was in keeping with his genetic test. So, as the program concluded, good for science, bad for Mosley, at least so far as his VO2 max was concerned.

So my overall view of the program was that the science was persuasive, and quite exciting, especially re the ‘HIT protocol’.

On a personal level I find this very interesting, and in tune with my intuitions. When I was young I was a skinny thing who had little interest in food, in fact I actively disliked most of it, and my mother despaired of finding any kind of food I liked. In my teen years I was quite sporty and active but I hated exercise. I loved sport for the competition, not the exercise. In my early twenties I worked for a few years in a really good restaurant and discovered the joys of food and cooking, but I still quite active and sporty and rode a bike everywhere, but as the twenties moved into the thirties, sport became less of an activity and more of a spectacle, and I got my driver’s licence and could afford to eat out more, and my weight, as I got into my forties, began to creep up. In my teens and twenties I was around 69 or 70 kilos, just within the normal rate for my height (168cm), according to the BMI. In my thirties and early forties this crept up to the low to mid 70s, and then in the late forties it started to climb a bit alarmingly, reaching a maximum of 83.4 – that’s about a kilo below the obese range – in November -December last year. It’s probably fair to say that in the ten years leading up to that high, I’d exercised very little.

This morning, after a year, not of dieting, but of eating less and exercising a bit more – regular walking and some simple, non-strenuous CSIRO exercises, my weight was 72.9 and falling. I actually allow myself to feel hungry and quite enjoy it. I try to get back to the mindset of my youth when food didn’t matter to me. It’s not easy but it does work for periods. I also feel the benefits. I was over-eating and suffering gastric and digestive problems. They’ve disappeared this year.

So, although it’s unlikely that I’ll get genetically tested for my response to exercise – unless the test becomes freely available in the foreseeable – my guess is that I’m closer along the spectrum to the super responders than to the no-changers.

I also find the NEAT results are in keeping with my personal intuitions. As I got older and stopped playing sports, I became conscious of the dangers of sitting around all day. I’m a big reader, and a regular writer, so obviously sitting has played a big part in my whole adult life. When I lived alone, I used to read while pacing about in my flat. Nowadays, with podcasts, I can time a solid evening walk with a 70 minute or so episode of the SGU. When I visited people, I got mild complaints that I wouldn’t ‘sit and relax’, but preferred to chat while on my feet. That was more in my forties (I’m now 56). In recent years, before 2012, I kind of gave up, and relaxed into pudgy middle age. But 2012 has brought a change, in my dietary and activity habits, and it’s been all to the good. I’m only two and a half kilos from being out of the overweight range and into the normal range. Ultimately my aim is to get down to under 70ks again, perhaps for the first time in 30 years, and I’m on target to achieve that. Importantly, without strain. I’m aiming for a kilo a month, so my target is to be below 72ks by the end of January, and below 70ks by the end of March.

Written by stewart henderson

January 1, 2013 at 10:30 am