an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Archive for the ‘energy’ Category

climate change – we know what we should be doing

with one comment

Professor Mark Howden of the ANU and the IPCC – straight science and economic sense

Here in Australia we have a national government that hates to mention human-induced climate change publicly, whatever their personal views are, and clearly they’re varied. I’ve long suspected that there’s a top-down policy (which long predates our current PM) of not mentioning anthropogenic global warming, lest it outrage a large part of the conservative base, while doing a few things behind the scenes to support renewables and reduce emissions. It’s a sort of half-hearted, disorganised approach to what is clearly a major problem locally and globally. And meanwhile some less disciplined or less chained members or former members of this government, such as former PM Tony Abbott and current MP for Hughes, Craig Kelly, are ignoring the party line (and science), and so revealing just how half-arsed the government’s way of dealing with the problem really is. The national opposition doesn’t seem much better on this issue, and it might well be a matter of following the money…

So I was impressed with a recent ABC interview with Australian climate scientist and leading member of the IPCC, Professor Mark Howden, also director of the Climate Change Institute at the Australian National University, who spoke a world of good sense in about ten minutes. 

The interview was preceded by the statement that the government is holding to its emission reduction targets – considered to be rather minimal by climate change scientists – while possibly ‘tweaking’ broader climate change policy. This is another example of ‘don’t scare the base’, IMHO. It was also reported that the government felt it might reach its Paris agreement without using ‘carry-over credits’ from the previous Kyoto agreement.  

The issue here is that our government, in its wisdom, felt that it should get credit for ‘more than meeting’ its Kyoto targets. As Howden pointed out, those Kyoto targets were easy to meet because we’d have met them even while increasing our emissions (which we in fact did). Spoken without any sense of irony by the unflappable professor. 

There’s no provision in the Paris agreement for such ‘carry-over credits’ – however the government has previously relied on them as an entitlement, and in fact pushed for them in a recent meeting in Madrid. Now, it’s changing its tune, slightly. The hullabaloo over the bushfire tragedies has been an influence, as well as a growing sense that reaching the Paris targets without these credits is do-able. Interestingly, Howden suggests that the credits are important for us meeting our Paris commitments up to 2030, as they make up more than half the required emissions reductions. So, if they’re included, we’ll need a 16% reduction from here, rather than a 26 – 28% reduction. But is this cheating? Is it in the spirit of the Paris agreement? Surely not, apart from legal considerations. It certainly affects any idea that Australia might play a leadership role in emissions reductions. 

So now the government is indicating that it might scrap the reliance on credits and find real reductions – which is, in fact, a fairly momentous decision for this conservative administration, because the core emissions from energy, transport, waste and other activities are all rising and would need to be turned around (I’m paraphrasing Howden here). So far no policies have been announced, or are clearly in the offing, to effect this turnaround. There’s an Emissions Reductions Fund,  established in 2014-5 to support businesses, farmers, landowners in reducing emissions through a carbon credit scheme (this is news to me) but according to Howden it’s in need of more public funding, and the ‘carbon sinks’ – that’s to say the forests that have been burning horrifically in past weeks  – which the government has been partly relying upon, are proving to be less stable than hoped. So there are limitations to the government’s current policies. Howden argues for a range of additional policies, but as he says, they’ve rejected (presumably permanently) so many options in the past, most notably carbon pricing, that the cupboard looks pretty bare for the future. There’s of course a speedier move towards renewables in electricity generation – which represents about 30% of emissions, the other 70% being with industry, agriculture, transport and mining (see my previous piece on fracking, for example, a practice that looks to be on the increase in Australia). Howden puts forward the case that it’s in this 70% area that policies can be most helpful, both in emissions reduction and jobs growth. For example, in transport, Australia is well behind other nations in the uptake of EVs, which our government has done nothing to support, unlike most advanced economies. Having EVs working off a renewables grid would reduce transport emissions massively. Other efficiencies which could be encouraged by government policy would be reducing livestock methane emissions through feed and husbandry reforms, such as maintaining shade and other stress-reducing conditions. This can increase productivity and reduce per-unit environmental footprint – or hoofprint. 

As to the old carbon pricing argument – Howden points out that during the brief period that carbon pricing was implemented in Australia, core emissions dropped significantly, and the economy continued to grow. It was clearly successful, and its rescinding in around 2015 has proved disastrous. Howden feels that it’s hard to foresee Australia meeting its 2030 Paris targets without some sort of price on carbon – given that there won’t be any deal on carry-over credits. There’s also an expectation that targets will be ramped up, post-2030. 

So, the message is that we need to sensibly revisit carbon pricing as soon as possible, and we need to look positively at abatement policies as encouraging growth and innovation – the cost of doing nothing being much greater than the costs involved in emissions reduction. And there are plenty of innovations out there – you can easily look them up on youtube, starting with the Fully Charged show out of Britain. The complacency of the current Oz government in view of the challenges before us is itself energy-draining – like watching a fat-arsed couch potato yawning his way towards an early death. 

References

https://iview.abc.net.au/show/abc-news-mornings

https://www.environment.gov.au/climate-change/government/emissions-reduction-fund/about

https://ussromantics.com/2020/01/02/fracking-hell/

Written by stewart henderson

January 16, 2020 at 10:37 am

fracking hell

with one comment

A very very brief piece in New Scientist back in August reported some research to the effect that hydraulic fracturing, aka fracking, is mostly responsible for a rise in atmospheric methane since 2008.

Having just spotted this today, I was somewhat shocked. I’ve heard news about fracking of course, and the damage report has grown – but it seemed to me mostly about local geological instability, overuse of water, and site pollution. So what’s the methane issue?

National Geographic reports on the same research (published in the journal Biogeoscienceshere. Methane is a major greenhouse gas, of course, heating the atmosphere as much as eighty times the equivalent amount of carbon dioxide, but the question surely is – just how much methane does fracking release?

The NG article also mentions a 2015 NASA study that found a sharp rise in methane levels from 2006, growing by about 25 million tons per year. It calculated that at least half of this increase came from fossil fuels. These findings happen to coincide with the growth in the use of fracking technology from around that time. Most of the emissions come from shale gas – that’s mostly methane – operations in the USA and Canada. The article describes the process:

Fracking involves drilling an oil or gas well vertically and then horizontally into a shale formation. A mixture of highly pressurized water, chemicals, and sand is injected to create and prop open fissures, or pathways for the gas to flow

But as more has become known about fracking, opposition has grown. While most fracking is done in the USA and Canada, a number of US states have either banned the practice or are considering doing so. It’s banned in France and Germany, and has become a hot issue in Australia, with the ‘unconventional gas’ producers, mostly operating in Queensland, seeking to expand operations throughout much of northern Australia. The NT government decided to lift its moritorium on fracking in 2018 after a comprehensive enquiry claimed that fracking could be brought to safe levels if 135 recommendations were followed. The government promised to follow the recommendations, of course, but the process smells horribly of back-door dealing. And in the USA the Trump anti-administration is doing all it can to further the practise, auctioning off drilling rights in large swathes of land to oil and gas developers. 

It seems to me that fracking is by its nature a short-term, stop-gap technology, which seeks to ferret out smaller and smaller reserves through applying more and more pressure, risking increasing damage to the environment, and to the health of local people exposed to under-reported leakages of the 650 or so chemicals used in the process, many of them well-recognised carcinogens. Australia’s Business Insider website has an article on the 10 scariest chemicals that have been used in hydraulic fracking. They are: methanol, BTEX compounds (benzene, toluene, xylene and ethylbenzene), diesel fuel, lead, hydrogen fluoride, naphthalene, sulphuric, crystalline silica, formaldehyde and ‘other unknown chemicals’. Now it’s likely true that any operations which employ chemicals would be found wanting under scrutiny, but it’s also true that the fracking industry, especially in the USA currently, operates under very little oversight, and will be seeking maximum benefit from a rogue regime. And it seems to me that some science-based organisations, such as the US Geological Survey, are minimising the damage and extolling the virtues, always pointing out that risks will be minimal ‘if proper practises are in place’. That’s an impossibly big ‘if’ when talking about the USA’s current dictatorship. 

References

https://www.theguardian.com/environment/2018/jun/18/not-safe-not-wanted-is-the-end-of-nt-fracking-ban-a-taste-of-things-to-come

https://www.businessinsider.com.au/scary-chemicals-used-in-hydraulic-fracking-2012-3#methanol-1

https://www.nationalgeographic.com/environment/2019/08/fracking-boom-tied-to-methane-spike-in-earths-atmosphere/

Written by stewart henderson

January 2, 2020 at 7:37 am

reflections on base load, dispatchable energy and SA’s current situation

leave a comment »

just to restate the point that SA’s power outages are due to transmission/distribution lines being damaged, nothing to do with renewable energy

Canto: So now we’re going to explore base load. What I think it means is reliable, always available energy, usually from fossil fuel generators (coal oil gas), always on tap, to underpin all this soi-disant experimental energy from solar (but what about cloudy days, not to mention darkness, which is absence of light, which is waves of energy isn’t it?) and wind (which is obviously variable, from calm days to days so stormy that they might uproot wind turbines and send them flying into space, chopping up birds in the process).

Jacinta: Well we can’t think about base load without thinking about grids. Our favourite Wikipedia describes it as ‘the minimal level of demand on an electrical grid over a span of time’. So the idea is that you always need to cover that base, or you’ll be in trouble. And an electrical grid is a provision of electrical service to a particular community, be it a suburb, a city or a state. 

Canto: Right, I think, and what I like about Wikipedia is the way it sticks it to the back-facing thinkers, for whom base load always means provision from traditional providers (coal oil gas). 

Jacinta: Yes, let’s rub it in by quoting Wikipedia on this. 

When the cheapest power was from large coal and nuclear plants which could not be turned up or down quickly, they were used to generate baseload, since it is constant, and they were called “baseload plants.” Large standby reserves were needed in case of sudden failure of one of these large plants. Unvarying power plants are no longer always the cheapest way to meet baseload. The grid now includes many wind turbines which have such low marginal costs that they can bid lower prices than coal or nuclear, so they can provide some of the baseload when the wind blows. Using wind turbines in areas with varying wind conditions, and supplementing them with solar in the day time, dispatchable generation and storage, handles the intermittency of individual wind sources.

Canto: So the times are a-changing with respect to costs and supply, especially as costs to the environment of fossil fuel supplies are at last being factored in, at least in some parts of the world. But let’s keep trying to clarify terms. What about dispatchable generation, and how does it relate to base load?

Jacinta: Well, intermittent power sources, such as wind and solar, are not dispatchable – unless there’s a way to store that energy. Some renewable energy sources, such as geothermal and biomass, are dispatchable, but they don’t figure too much in the mix at present. The key is in the word – these sources are able to be dispatched on demand, and have adjustable output which can be regulated in one way or another. But some sources are easier, and cheaper, to switch on and off than others. It’s much about timing; older generation coal-fired plants can take many hours to ‘fire up’, so their dispatchability, especially in times of crisis, is questionable. Hydroelectric and gas plants can respond much more quickly, and batteries, as we’ve seen, can respond in microseconds in times of crisis, providing a short-term fix until other sources come on stream. Of course, this takes us into the field of storage, which is a whole other can of – what’s the opposite of worms?

Canto: So this question of base load, this covering of ‘minimal’ but presumably essential level of demand, can be a problem for a national grid, but you can break that grid up presumably, going ‘off grid’, which I’m guessing means going off the national grid and either being totally independent as a household or creating a micro-grid consisting of some small community…

Jacinta: Yes and this would be the kind of ‘disruptive economy’ that causes nightmares for some governments, especially conservative ones, not to mention energy providers and retailers. But leaving aside micro-grids for now, this issue of dispatchability can be dealt with in a flexible way without relying on fossil fuels. Energy storage has proven value, perhaps especially with smaller grids or micro-grids, for example in maintaining flow for a particular enterprise. On the larger scale, I suppose the Snowy 2 hydro project will be a big boon? 

Canto: 2000 megawatts of energy generation and 175 hours of storage says the online ‘brochure’. But the Renew Economy folks, who always talk about ‘so-called’ base load, are skeptical. They point to the enormous cost of the project, which could escalate, due, among other things, to the difficulties of tunnelling through rock of uncertain quality. They feel that government reports have over-hyped the project and significantly downplayed the value of alternatives, such as battery electric storage systems, which are modular and flexible rather than this massive one-off project which may be rendered irrelevant once completed. 

Jacinta: So let’s relate this to the South Australian situation. We’re part of the national grid, or the National Energy Market (NEM), which covers SA and the eastern states. This includes generators, transformers (converting low voltage to high voltage for transport, and then converting back to low voltage for distribution), long distance transmission lines and shorter distance distribution lines. So that’s wholesale stuff, and it’s a market because different companies are involved in producing and maintaining the system – the grid, if you like.

Canto: I’ve heard it’s the world’s largest grid, in terms of area covered.

Jacinta: I don’t think so, but it depends on what metric you use. Anyway, it’s pretty big. South Australia has been criticised by the federal government for somehow harming the market with its renewables push. Also, it was claimed at least a year ago that SA had the highest electricity prices in the world. This may have been an exaggeration, but why are costs so high here? There are green levies on our bill, but I think they’re optional. Also, the electricity system was privatised in the late 90s, so the government has lost control of pricing. High-voltage transmission lines are owned by ElectraNet, part-owned by the Chinese government. The lower voltage distribution lines are operated by SA Power Networks, majority-owned by a Hong Kong company, and then there are the various private retailers. It’s hard to work out, amongst all this, why prices are so high here, but the closure of the Northern coal-fired power station in Port Augusta, which was relatively low cost and stable, meant a greater reliance on more expensive gas. Wind and solar have greater penetration into the SA network than elsewhere, but there’s still the intermittency problem. Various projects currently in the pipeline will hopefully provide more stability in the future, including a somewhat controversial interconnector between SA and NSW. Then there’s the retail side of things. Some retailers are also wholesalers. For instance AGL supplies 48% of the state’s retail customers and controls 42% of generation capacity. All in all, there’s a lack of competition, with only three companies competing for the retail market, which is a problem for pricing. At the same time, if competitors can be lured into the market, rather than being discouraged by monopoly behaviour, the high current prices should act as an incentive. 

Canto: Are you suggesting that retailers are profiteering from our high prices?

Jacinta: I don’t know about that, but before the Tesla battery came online the major gas generators – who are also retailers – were using their monopoly power to engage in price gouging at times of scarcity, to a degree that was truly incredible – more so in that it was entirely legal according to the ACCC and other market regulators. The whole sorry story is told here . So I’m hoping that’s now behind us, though I’m sure the executives of these companies will have earned fat bonuses for exploiting the situation while they could. 

Canto: So prices to consumers in SA have peaked and are now going down?

Jacinta: Well the National Energy Market has suffered increased costs for the past couple of years, mainly due to the increased wholesale price of gas, on which SA is heavily reliant. It’s hard to get reliable current data on this online, but as of April this year the east coast gas prices were on their way down, but these prices fluctuate for all sorts of reasons. Of course the gas lobby contends that increased supply – more gas exploration etc – will solve the problem, while others want to go in the opposite direction and cut gas out of the South Australian market as much as possible. That’s unlikely to happen though, in the foreseeable, so we’re likely to be hostage to fluctuating gas prices, and a fair degree of monopoly pricing, for some time to come. 


Written by stewart henderson

November 26, 2018 at 11:37 am

the continuing story of South Australia’s energy solutions

leave a comment »

In a very smart pre-election move, our state Premier Jay Weatherill has announced that there’s a trial under way to install Tesla batteries with solar panels on over 1,000 SA Housing Trust homes. The ultimate, rather ambitious aim, is to roll this out to 50,000 SA homes, thus creating a 250MW power plant, in essence. And not to be outdone, the opposition has engaged in a bit of commendable me-tooism, with a similar plan, actually announced last October. This in spite of the conservative Feds deriding SA labor’s ‘reckless experiments’ in renewables.

Initially the plan would be offered to public housing properties – which interests me, as a person who’s just left a solarised housing association property for one without solar. I’m in community housing, a subset of public housing. Such a ‘virtual’ power plant will, I think, make consumers more aware of energy resources and consumption. It’s a bit like owning your own bit of land instead of renting it. And it will also bring down electricity prices for those consumers.

This is a really important and exciting development, adding to and in many ways eclipsing other recently announced developments in SA, as written about previously. It will be, for a time at least, the world’s biggest virtual power plant, lending further stability to the grid. It’s also a welcome break for public housing tenants, among the most affected by rising power bills (though we’ll have to wait and see if prices do actually come down as a result of all this activity).

And the announcements and plans keep coming, with another big battery – our fourth – to be constructed in the mid-north, near Snowtown. The 21MW/26MWh battery will be built alongside a 44MW solar farm in the area (next to the big wind farm).

 

South Australia’s wind farms

Now, as someone not hugely well-versed in the renewable energy field and the energy market in general, I rely on various websites, journalists and pundits to keep me honest, and to help me make sense of weird websites such as this one, the apparent aim of which is to reveal all climate scientists as delusionary or fraudsters and all renewable energy as damaging or wasteful. Should they (these websites) be tackled or ignored? As a person concerned about the best use of energy, I think probably the latter. Anyway, one journalist always worth following is Giles Parkinson, who writes for Renew Economy, inter alia. In this article, Parkinson focuses on FCAS (frequency control and ancillary services), a set of network services overseen by AEMO, the Australian Energy Market Operator. According to Parkinson and other experts, the provision of these services has been a massive revenue source for an Australian ‘gas cartel’, which has been rorting the system at the expense of consumers, to the tune of many thousands of dollars. Enter the big Tesla battery , officially known as the Hornsdale Power Reserve (HPR), and the situation has changed drastically, to the benefit of all:

Rather than jumping up to prices of around $11,500 and $14,000/MW, the bidding of the Tesla big battery – and, in a major new development, the adjoining Hornsdale wind farm – helped (after an initial spike) to keep them at around $270/MW.

This saved several million dollars in FCAS charges (which are paid by other generators and big energy users) in a single day.

And that’s not the only impact. According to state government’s advisor, Frontier Economics, the average price of FCAS fell by around 75 per cent in December from the same month the previous year. Market players are delighted, and consumers should be too, because they will ultimately benefit. (Parkinson)

As experts are pointing out, the HPR is largely misconceived as an emergency stop-gap supplier for the whole state. It has other, more significant uses, which are proving invaluable. Its effect on FCAS, for example, and its ultra-ultra-quick responses to outages at major coal-fired generators outside of the state, and ‘its smoothing of wind output and trading in the wholesale market’. The key to its success, apparently, is its speed of effect – the ability to switch on or off in an instant.

Parkinson’s latest article is about another SA govt announcement – Australia’s first renewable-hydrogen electrolyser plant at Port Lincoln.

I’ve no idea what that means, but I’m about to find out – a little bit. I do know that once-hyped hydrogen hasn’t been receiving so much support lately as a fuel – though I don’t even understand how it works as a fuel. Anyway, this plant will be ten times bigger than one planned for the ACT as part of its push to have its electricity provided entirely by renewables. It’s called ‘green hydrogen’, and the set-up will include a 10MW hydrogen-fired gas turbine (the world’s largest) driven by local solar and wind power, and a 5MW hydrogen fuel cell. Parkinson doesn’t describe the underlying technology, so I’ll have a go.

It’s all about electrolysis, the production of hydrogen from H2O by the introduction of an electric current. Much of what follows comes from a 2015 puff piece of sorts from the German company Siemens. It argues, like many, that there’s no universal solution for electrical storage, and, like maybe not so many, that large-scale storage can only be addressed by pumped hydro, compressed air (CAES) and chemical storage media such as hydrogen and methane. Then it proceeds to pour cold water on hydro – ‘the potential to extend its current capacity is very limited’ – and on CAES ‘ – ‘has limitations on operational flexibility and capacity. I know nothing about CAES, but they’re probably right about hydro. Here’s their illustration of the process they have in mind, from generation to application.

Clearly the author of this document is being highly optimistic about the role of hydrogen in end-use applications. Don’t see too many hydrogen cars in the offing, though the Port Lincoln facility, it’s hoped, will produce hydrogen ‘that can be used to power fuel cell vehicles, make ammonia, generate electricity in a turbine or fuel cell, supply industry, or to export around the world’.

So how does electrolysis (of water) actually work? The answer, of course, is this:

2 H2O(l) → 2 H2(g) + O2(g); E0 = +1.229 V

Need I say more? On the right of the equation, E0 = +1.229 V, which basically means it takes 1.23 volts to split water. As shown above, Siemens is using PEM (Proton Exchange Membrane, or Polymer Electrolyte Membrane) electrolysis, though alkaline water electrolysis is another effective method. Not sure which which method is being used here.

In any case, it seems to be an approved and robust technology, and it will add to the variety of ‘disruptive’ and innovative plans and processes that are creating more regionalised networks throughout the state. And it gives us all incentives to learn more about how energy can be produced, stored and utilised.

Written by stewart henderson

February 14, 2018 at 4:50 pm

more on Australia’s energy woes and solutions

leave a comment »

the SA Tesla Powerpack, again

Canto: So the new Tesla battery is now in its final testing phase, so South Australia can briefly enjoy some fame as having the biggest battery in the world, though I’m sure it’ll be superseded soon enough with all the activity worldwide in the battery and storage field.

Jacinta: Well I don’t think we need to get caught up with having the biggest X in the world, it’s more important that we’re seen as a place for innovation in energy storage and other matters energetic. So, first, there’s the Tesla battery, associated with the Hornsdale wind farm near Jamestown, and there are two other major battery storage systems well underway, one in Whyalla, designed for Whyalla Steel, to reduce their energy costs, and another smaller system next to AGL’s Wattle Point wind farm on Yorke Peninsula.

Canto: Well, given that the federal government likes to mock our Big Battery, can you tell me how the Tesla battery and the other batteries work to improve the state?

Jacinta: It’s a 100MW/129MWh installation, designed to serve two functions. A large portion of its stored power (70MW/39MWh) is for the state government to stabilise the grid in times of outage. Emergency situations. This will obviously be a temporary solution before other, slower reacting infrastructure can be brought into play. The rest is owned by Neoen, Tesla’s partner company and owner of the wind farm. They’ll use it to export at a profit when required – storing at low prices, exporting at higher prices. As to the Whyalla Steel battery, that’s privately owned, but it’s an obvious example, along with the AGL battery, of how energy can be produced and stored cleanly (Whyalla Steel relies on solar and hydro). They point the way forward.

Canto: Okay here’s a horrible question, because I doubt if there’s any quick ‘for dummies’ answer. What’s the difference between megawatts and megawatt-hours?

Jacinta: A megawatt, or a watt, is a measure of power, which is the rate of energy transfer. One watt equals one joule per second, and a megawatt is 1,000,000 watts, or 1,000 kilowatts. A megawatt-hour is one megawatt of power flowing for one hour.

Canto: Mmmm, I’m trying to work out whether I understand that.

Jacinta: Let’s take kilowatts. A kilowatt (KW) is 1,000 times the rate of energy transfer of a watt. In other words, 1000 joules/sec. One KWh is one hour at that rate of energy transfer. So you multiply the 1000 by 3,600, the number of seconds in an hour. That’s a big number, so you can express it in megajoules – the answer is 3.6Mj. One megajoule equals 1,000,000 joules of course.

Canto: Of course. So how is this working for South Australia’s leadership on renewables and shifting the whole country in that direction?

Genex Power site in far north Queensland – Australia’s largest solar farm together with a pumped hydro storage plant

Jacinta: Believe me it’s not all South Australia. There are all sorts of developments happening around the country, mostly non-government stuff, which I suppose our rightist, private enterprise feds would be very happy with. For example there’s the Genex Power solar, hydro and storage project in North Queensland, situated in an old gold mine. Apparently pumped hydro storage is a competitor with, or complementary to, battery storage. Simon Kidston, the Genex manager, argues that many other sites can be repurposed in this way.

Canto: And the cost of wind generation and solar PV is declining at a rate far exceeding expectations, especially those of government, precisely because of private enterprise activity.

Jacinta: Well, mainly because it’s a global market, with far bigger players than Australia. Inputs into renewables from states around the world – India, Mexico, even the Middle East – are causing prices to spiral down.

Canto: And almost as we speak the Tesla gridscale battery has become operational, and we’ve gained a tiny place in history. But what about this National Energy Guarantee from the feds, which everyone seems to be taking a swing at. What’s it all about?

Jacinta: This was announced a little over a month ago, as a rejection of our chief scientist’s Clean Energy Target. Note how the Feds again avoid using such terms as ‘clean’ and ‘renewable’ when it talks or presents energy policy. Anyway, it may or may not be a good thing – there’s a summary of what some experts are saying about it online, but most are saying it’s short on detail. It’s meant to guarantee a reliable stream of energy/electricity from retailers, never mind how the energy is generated – so the government can say it’s neither advocating nor poo-pooing renewables, it’s getting out of the way and letting retailers, some of whom are also generators, deliver the energy from whatever source they like, or can.

Canto: So they’re putting the onus on retailers. How so?

Jacinta: The Feds are saying retailers will have to make a certain amount of dispatchable power available, but there is one ridiculously modest stipulation – greenhouse emissions from the sector must be reduced by 26% by 2030. The sector can and must do much better than that. The electricity sector makes up about a third of emissions, and considering the slow movement on EVs and on emissions reductions generally, we’re unlikely to hold up our end of the Paris Agreement, considering the progressively increasing targets.

Canto: But that’s where they leave it up to the private sector. To go much further than their modest target. They would argue that they’re more interested in energy security.

Jacinta: They have a responsibility for providing security but not for reducing emissions? But it’s governments that signed up to Paris, not private enterprises. The experts are pointing this out with regard to other sectors. More government-driven vehicle emission standards, environmental building regulations, energy efficient industries and so forth.

Canto: And the Feds actually still have a renewable energy agency (ARENA), in spite of the former Abbott government’s attempt to scrap it, and a plan was announced last month to set up a ‘demand response’ trial, involving ARENA, AEMO (the energy market operator) and various retailers and other entities. This is about providing temporary supply during peak periods – do you have any more detail?

Jacinta: There’s a gloss on the demand response concept on a Feds website:

From Texas to Taiwan, demand response is commonly used overseas to avoid unplanned or involuntary outages, ease electricity price spikes and provide grid support services. In other countries, up to 15 per cent of peak demand is met with demand response.

Canto: So what exactly does it have to do with renewables?

Jacinta: Well get ready for a long story. It’s called demand response because it focuses on the play of demand rather than supply. It’s also called demand management, a better name I think. It’s partly about educating people about energy not being a finite commodity available at all times in equal measure…

Canto: Sounds like it’s more about energy conservation than about the type of energy being consumed.

Jacinta: That’s true. So on extreme temperature days, hot or cold – but mostly hot days in Australia – electricity demand can jump by 50% or so. To cope with these occasional demand surges we’ve traditionally built expensive gas-based generators that lie idle for most of the year. For reasons I’m not quite able to fathom, at such extreme demand times the ‘spot price’ for wholesale electricity goes through the roof – or more accurately it hits the ceiling, set by the National Energy Market at $14,000 per MWh. That’s just a bit more than the usual wholesale price, about $100/MWh. Demand management is an attempt to have agreements with large commercial/industrial users to reduce usage at certain times, or the agreements could be with energy retailers who then do deals with customers. Of course, bonuses could be handed out to compliant customers. The details of how this offsets peak demand usage and pricing are still a bit of a mystery to me, however.

Written by stewart henderson

December 9, 2017 at 9:07 pm

an assortment of new technology palaver

leave a comment »

I like the inset pic – very useful for the Chinese

Western Australia lithium mining boom

I’m hearing, better late than never, that lithium carbonate from Western Australia is in big demand. The state already provides most of the world’s lithium for all those batteries used to run smart devices, electric vehicles, and large-scale storage batteries such as South Australia’s Tesla-Neoen thingy at Jamestown (now 80% complete, apparently). Emissions legislation around the world will only add to the demand, with the French and British governments planning to ban the sale of petrol and diesel vehicles by 2040, following similar plans by India and Norway, and the major investments in EVs in China. Australia’s government, of course, is at the other end of the spectrum re EVs, but I’ve no doubt we’ll get there eventually (we’ll have to!). Tesla, Volvo, Nissan, Renault, Volkswagen and Mercedes are all pushing more EVs into the marketplace. So now’s the time, according to Money Boffins Inc, to buy shares in lithium and other battery minerals (I’ve never bought a share in my life). This lithium mining boom has been quite sudden and surprising to many pundits. In January of this year, only one WA mine was producing lithium, but by mid-2018 there will be eight, according to this article. The battery explosion, so to speak, is bringing increased demand for other minerals too, including cobalt, nickel, vanadium and graphite. Australia’s well-positioned to take advantage. Having said that, the amount of lithium we’re talking about is a tiny fraction of what WA exports in iron ore annually, but it’s already proving to be a big boost to the WA economy, and a big provider of jobs.

battery recycling

Of course all of this also poses a problem, as mentioned in my last post, and it’s a problem that the renewable energy sector should be at least ideologically driven to deal with: waste and recycling. Considering the increasing importance of battery technology in our world, and considering the many toxic components of modern batteries, such as nickel, lead acid, cadmium and mercury, it’s yet another disappointment that there’s no national recycling scheme for non-rechargeable batteries. Currently only lead acid batteries can be recycled, and the rest usually end up in landfill or are sent to be recycled overseas. So it’s been left to the industry to develop an Australian Battery Recycling Initiative (ABRI), which has an interesting website where you can learn about global recycling and many other things batterial – including, of course, how to recycle your batteries. Also, an organisation called Clean Up Australia has a useful battery recycling factsheet, which, for my own educational purposes I’m going to recycle here, at least partly. Battery types can be divided into primary, or single-use, and secondary, or rechargeable. The primary batteries generally use zinc and manganese in converting chemical to electrical energy. Rechargeable batteries use a variety of materials, including nickel cadmium, nickel metal hydride and of course lithium ion chemistry. Batteries in general are the most hazardous of waste materials, but there are also environmental impacts from battery production (mining mostly) and distribution (transport and packaging). As mentioned, Australian batteries are sent overseas for recycling – ABRI and other groups are trying to set up local recycling facilities. Currently a whopping 97% of these totally recyclable battery units end up in landfill, and – another depressing factoid – Australia’s e-waste is growing at 3 times the rate of general household waste. So the public is advised to use rechargeable batteries wherever possible, and to take their spent batteries to a proper recycling service (a list is given on the fact sheet). The ABRI website provides a more comprehensive list of drop-of services.

2015 registrations: Australia’s bar would be barely visible on this chart

EVs in Australia – a very long way to go

I recently gave a very brief overview of the depressing electric vehicle situation in Australia. Thinking of buying one? Good luck with that. However, almost all motorists are much richer than I am, so there’s hope for them. They’re Australia’s early adopters of course, so they need all the encouragement we can give them. Journalist Timna Jacks has written an article for the Sydney Morning Herald recently, trying to explain why electric vehicles have hit a dead end in Australia. High import duties, a luxury car tax and a lack of subsidies and infrastructure for electric vehicles aren’t exactly helping the situation. The world’s most popular electric car, the Nissan Leaf, is much more expensive here than in Europe or the US. And so on. So it’s hardly surprising that only 0.1% of all cars sold in Australia in 2015 were electric cars (compared with 23% and rising in EV heaven, aka Norway, 1.4% in France and 0.7% in the US). Of course Australia’s landscape’s more or less the opposite of compact, dense and highly urbanised Europe, and range anxiety might be a perennial excuse here. We have such a long way to go. I expect we’ll have to wait until shame at being the world’s laughing-stock is enough of a motivation.

Adelaide’s Tindo

I’ve been vaguely aware of Adelaide’s ‘green bus’ for some years but, mea culpa, haven’t informed myself in any depth up until now. The bus is called Tindo, which is a Kaurna aboriginal word meaning the sun. Apparently it’s the world’s first and only completely solar powered electric bus, which is quite amazing. The bus has no solar panels itself, but is charged from the solar panels at the Franklin Street bus station in the city centre. It’s been running for over four years now and I’m planning to take a trip on it in the very near future. I was going to say that it’ll be the first time I’ve been on a completely electric vehicle with no internal combustion engine but I was forgetting that I take tram trips almost every day. Silly me. Still, to take a trip on a bus with no noisy engine and no exhaust fumes will be a bit of a thrill for me. Presumably there will be no gear system either, and of course it’ll have regenerative braking – I’m still getting my head around this stuff – so the ride will be much less jerky than usual.

So here are some of the ‘specs’ I’ve learned about Tindo. It has a range of over 200 kilometres (and presumably this is assisted by the fact that its route is fixed and totally urban, so the regen braking system will be charging it up regularly). It uses 11 Swiss-made Zebra battery modules which are based on sodium nickel chloride, a type of molten salt technology. They have higher energy density, they’re lightweight and virtually maintenance free. According to the City of Adelaide website the solar PV system on the roof of the bus station is (or was – the website is annoyingly undated) ‘Adelaide’s largest grid-connected system, generating almost 70,000 kWh of electricity a year’. No connection to the ‘carbon-intensive South Australian electricity grid’ is another plus, though to be fair our grid is far less carbon intensive than Victoria’s which is almost all brown coal. South Australia’s grid runs on around half gas and half renewables, mostly wind. The regen braking, I must remind myself, means that when decelerating the bus uses no energy at all, and the motor electronically converts into an electrical generator, which generates electricity with the continued forward motion of the bus. There are many more specs and other bits of info on this Tindo factsheet.

the tides – a massive potential resource?

leave a comment »

A floating tidal turbine, Orkney islands, as seen on Fully Charged

A recent episode of Fully Charged, the Brit video series on the sources and harnessing of clean energy, took us again to the very windy Orkney Isles at the top of Scotland to have a look at some experimental work being done on generating energy from tidal forces. When you think of it, it seems a no-brainer to harness the energy of the tides. They’re regular, predictable, unceasing, and in some places surely very powerful. Yet I’ve never heard of them being used on an industrial scale.

Of course, I’m still new to this business, so the learning curve continues steep. Tide mills have been used historically here and there, possibly even since Roman times, and tidal barrages have been operating since the sixties, the first and for a long time the largest being the La Rance plant, off the coast of Brittany, generating 240 MW. A slightly bigger one has recently been built in Korea (254 MW).

But tidal barrages – not what they’re testing in the Orkneys – come with serious environmental impact issues. They’re about building a barrage across a bay or estuary with a decent tidal flow. The barrage acts as a kind of adjustable dam, with sluice gates that open and close, and additional pumping when necessary. Turbines generate energy from pressure and height differentials, as in a hydro-electric dam. Research on the environmental impact of these constructions, which can often be major civil engineering projects, has revealed mixed results. Short-term impacts are often devastating, but over time one type of diversity has been replaced by another.

Anyway, what’s happening in the Orkneys is something entirely different. The islanders, the Scottish government and the EU are collaborating through an organisation called EMEC, the European Marine Energy Centre, to test tidal power in the region. They appear to be inviting innovators and technicians to test their projects there. A company called ScotRenewables, for example, has developed low-maintenance floating tidal turbines with retractable legs, one of which is currently being tested in the offshore waters. They’re designed to turn with the ebb and flood tides to maximise their power generation. It’s a 2 MW system, which of course could be duplicated many times over in the fashion of wind turbines, to generate hundreds if not thousands of megawatts. The beauty of the system is its reliability – as the tidal flow can be reliably predicted at least eighteen years into the future, according to the ScotRenewables CEO. This should provide a sense of stability and confidence to downstream suppliers. Also, floating turbines could easily be removed if they’re causing damage, or if they require maintenance. Clearly, the effect on the tidal system would be minimal compared to an estuarine barrage, though there are obvious dangers to marine life getting too close to turbines. The testing of these turbines is coming to an end and they’ve been highly successful so far, though they already have an improved turbine design in the wings, which can be maintained either in situ or in dock. The design can also be scaled down, or up, to suit various sites and conditions.

rotors are on retractable legs, to protect from storms, etc

Other quite different turbine types are being tested in the region, with a lot of government and public support, but I got the slight impression that commercial support for this kind of technology is somewhat lacking. In the Fully Charged video on this subject (to which I owe most of this info), Robert Llewelyn asked the EMEC marketing manager whether she thought tidal or wave energy had the greatest future potential (she opted for wave). My ears pricked up, as wave energy is another newie for me. Duh. Another post, I suppose.

As mentioned though in this video, a lot of the developments in this tidal technology have come from shipbuilding technology, from offshore oil and gas technology, and from maritime technology more generally, as well as modern wind turbine technology, further impressing on me that skills are transferable and that the cheap clean energy revolution won’t be the economic/employment disaster that the fossil fuel dinosaurs predict. It’s a great time for innovation, insight and foresight, and I can only hope that more government and business people in Australia, where I seem to be stuck, can get on board.

fixed underwater tidal turbine being tested off the Orkney Islands

Written by stewart henderson

October 11, 2017 at 6:27 am