an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Archive for the ‘glutathione’ Category

covid-19 stuff: NAC, glutathione, RT-PCR testing, re-positives

leave a comment »

So, more struggles with biochemistry. Update 70 talks again about N-acetylcysteine (NAC), but goes on to talk about glutathione, and whether glutathione itself might be a type of medication. So let’s get clear, or try to.

Glutathione is a naturally occurring and abundant thiol polypeptide in animal cells. A thiol has an SH (sulfanyl) group attached to a hydrocarbon chain, essentially. As we know, it’s an antioxidant which can be reduced by NAC, and they have structural relations. As Dr Seheult describes glutathione, it’s a combination of three amino acids, with cysteine at the centre. The other two are glycine and glutamate, and the cysteine and the glycine together effectively make up N-acetylcysteine – so NAC is described as a by-product or precursor of glutathione. A case report (regarded as the weakest level of scientific evidence) describes efficacious treatment of two patients with Covid-19-type symptoms using IV and oral glutathione. This and other studies and analyses seem to be begging for full-scale clinical trials to be carried out, but nothing as of mid-May. The treatments could be effective for hypoxemia in particular, due to the action on the disulphide bonds in VWF which are leading to platelet-rich thrombosis.

In his update 71 Seheult broaches the controversial topic of hydroxychloroquine, along with azithromycin and zinc. He suggests there’s evidence that hydroxychloroquine can act as a ‘zinc ionophore’, inducing zinc uptake into cells. Zinc inhibits the RNA-dependent RNA polymerase which SARS-CoV-2 utilises to reproduce. There has been a retrospective study suggesting that treatment with this combination may ‘result in a statistically significant reduction of mortality’, though maybe this hasn’t borne more careful analysis considering the cold water being poured on chloroquine as a treatment in recent months. It may be because it just doesn’t raise zinc levels sufficiently. The findings of the study do suggest the treatment has a statistically significant effect on reducing symptoms in hospitalised patients who are not in ICU – that is, they have relatively mild symptoms. No significant effect for ICU patients.

I should add here that now in August health authorities are warning against any unprescribed use of hydroxychloroquine as a prophylactic due to ineffectiveness and side-effects.

Update 72 began by looking at the sensitivity and specificity of antibody tests available, presumably in the USA. A study examined ‘four new commercially available serological assays [i.e blood serum tests]’, from three German and one US company, and it was found that they all ‘have a sufficient sensitivity and specificity for identifying individuals with past SARS-CoV2 infection’. Of course, the principal issue with the testing is the time it takes to receive results, but maybe that’ll be addressed anon.

Apparently (news to me in very safe – so far – South Australia where hardly anyone I know has had to be tested) there’s a difference between sensitivity and specificity, illustrated by the ‘spin’ and ‘snout’ mnemonic. For a highly specific test if you test positive you’re very sure to be in trouble, and for a highly sensitive test if you test negative you’re sure to be out of danger.

Dr Seheult next describes a retrospective study which looks at glycosylated haemoglobin (HbA1c) as a Covid-19 risk factor. A person’s HbA1c levels (how much glucose is attached to their haemoglobin) are a measure of diabetes. A1c (blood sugar level) is measured in percentages, with 5-6% being normal. The study found that ‘high HbA1c levels is associated with inflammation, hypercoagulability and low SaO2 [oxygen saturation] in Covid-19 patients, and the mortality rate (27.7%) is higher in patients with diabetes’. So HbA1c levels need to be looked at as a priority.

The update next looks at dentistry during the pandemic, for which there’s been little guidance, at least from the CDC. Apparently, during the AIDS crisis, dentists were viewed as modes of transmission, partly due to a NYT article on the subject. In any case, fewer people are now seeing their dentists for obvious reasons, which could lead to an oral health crisis. A number of diseases, including coronary disease, are linked to periodontal problems, so this can exacerbate the pandemic – and dental health, in Australia as in the USA, is not treated with the same gravitas as other forms of health.

Update 73 starts with a look at testing, particularly the reverse transcriptase polymerase chain reaction (RT-PCR) test. So the coronavirus has these spike proteins protruding from a bilipid membrane, with the RNA wrapped inside bound together by disulphide bonds and the like, I think. The protein shell around the virus is called the nucleocapsid. Of course the RNA’s code is specific to SARS-CoV2, so a test needs to look at a segment of the viral RNA and identify it with sufficient – essentially total – specificity. RNA is made up of the four base pairs adenine (A), uracil (U), guanine (G) and cytosine (C), with A pairing always with U and G with C. With that I’m going to switch to Scientific American for more detail.

A test starts with a sterile swab from the back of the nasal passage, aka a sample. Sample collection needs to be done properly, or it could lead to a false-negative result. If there’s viral RNA present, it’s extracted and used to produce a complementary strand of DNA – that’s where the reverse transcriptase enzyme comes in, reversing the usual transcription process from DNA to RNA. This material is then amplified – thousands of copies are made – to ensure a measurable result. The different available test kits generally vary in the segment of genetic material chosen.

I’m hearing that there are serious delays, in the USA at least, in delivering test results. This is extraordinary as, according to the Scientific American article, which is dated late March,

the FDA recently began granting emergency use authorization (EUA) to rapid diagnostic PCR tests that manufacturers say can deliver results in less than an hour. The authorization allows medical devices that have not yet been approved by the agency to be used during public health emergencies. 

What’s happening? According to very recent article from Quartz magazine, the problem is that there are too many kinds of tests. The EUA system was utilised, partly because of the urgency, partly because of the disastrous problem caused by the use of faulty reagents by the CDC back in February. Now there are about 150 tests that have been given EUA approval. Testing delays at first resulted mainly from lack of general lab equipment and PPR for the testers, but increasingly there are problems due to different types of tests, the variability of the tests, knowing which test to use, having the right equipment for each test, the prioritising of certain groups, such as front-line health workers, over others, confirmation of test results by other labs, and of course the overload in demand. We’re talking about the USA here, of course, and it just seems another case of lack of centralised control and uniformity in a state with a failed federal government.

Returning to update 73, Seheult describes a situation in which a SARS-Cov2-infected individual’s immune system has broken down the virus into ineffectual strands of RNA, proteins and other particles. It’s possible that a RT-PCR test could pick up on an RNA fragment, and produce a positive test result in these apparently recovered patients, and in fact this has often occurred. This is called a re-positive. The update describes a study by the South Korean CDC which provides valuable evidence on these re-positive cases. Some 280 re-positive subjects were studied, and about half of them displayed Covid-19 symptoms (on average 14 days after ‘recovery’). Presumably this re-positive finding was after they’d tested negative, i.e they’d first tested positive, then negative, then later positive again, though this isn’t clear. In any case, they checked a percentage of the subjects for antibodies and the result was almost entirely positive. They checked a larger sample for viral particles and found ‘not a single whole viral particle’, according to Dr Seheult, by which I presume he means anything that was replicable or active. They also looked at close contacts of the subjects, in large numbers, and all of them tested negative. So the finding was that these re-positives were, it seemed, the results of ultra-sensitive testing that was picking up viral RNA fragments that were in effect innocuous. This would seem to be a lesson for developing the right types of test. Hopefully a lesson learned.

References

Coronavirus Pandemic Update 70: Glutathione Deficiency, Oxidative Stress, and COVID 19

Coronavirus Pandemic Update 71: New Data on Adding Zinc to Hydroxychloroquine + Azithromycin

Coronavirus Pandemic Update 72: Dentists; Diabetes; Sensitivity of COVID-19 Antibody Tests

Coronavirus Pandemic Update 73: Relapse, Reinfections, & Re-Positives – The Likely Explanation

https://www.scientificamerican.com/article/heres-how-coronavirus-tests-work-and-who-offers-them/

https://qz.com/1886940/why-covid-19-test-results-take-so-long/

Written by stewart henderson

August 5, 2020 at 2:34 pm

update 69: NAC, glutathione, oxidative stress, thrombosis

leave a comment »

glutathione – far more than just an antioxidant

So we start with a closer look at glutathione, and its backbone amino acid chain, including the amino acid cysteine. Cysteine has the formula HO2CCH(NH2)CH2SH. The thiol sub-chain (SH) is important because it can bind to another form of the molecule, with S binding to S (oxidised form) rather than binding to H (reduced form) as here. So, as Dr Seheult explains, if you have two glutathiones, in this reduced form (2GSH), oxidised via hydrogen peroxide (H2O2), you will create a bond (GS-SG) between the two oxidised glutathiones, together with water. This happens in the oxidisation processes in our cells.

Seheult next mentions ADAMTS13, which is also known as von Willibrand factor-cleaving protease, so it’s a zinc-containing enzyme. VWF polymerises via disulphide bonds, and ADAMTS13 can help in disrupting that process, I think. Seheult diverts us by mentioning the disulphide bonds that connect the spiral strands of keratin in hair. A ‘perm’ reduces the molecular structure, breaking the disulphide bonds, so that the individual strands can be straightened, or made more curly, after which ‘you neutralise the perm agent’?? via H2O2, allowing disulphide bonds to re-form keeping the new hair structure in place. That was almost interesting.

So what can we do to assist these glutathione-based processes in relieving oxidative stress? This is apparently where N-Acetylcysteine (NAC) comes in. This molecule, which is ‘the N-acetyl derivative of the natural amino acid L-cysteine’, is ‘an antioxidant and disulphide breaking agent’, according to a 2018 review article in the Journal of Free Radical Research (not a political journal). So NAC is a reducing agent, which, like cysteine, has an SH bond. It breaks disulphide bonds and adds hydrogen, reducing viscosity. NAC has been used as a mucolytic inhalant, and as an agent against tylenol (paracetamol) overdose. How this last effect works is complex and I’ll try to comprehend it.

As Seheult explains it, NAC would act on the metabolite of paracetamol in situations of overdose. In such cases the liver metabolises paracetamol via an alternative pathway, by means of the toxic metabolite NAPQI, which depletes the liver’s glutathione. NAC replenishes the glutathione, but I won’t try to analyse the mechanism here. The main point is that NAC’s glutathione-boosting effects may have potential in dealing with Covid-19 symptoms. According to the above-mentioned review article, glutathione depletion is related to oxidative stress associated with a wide range of illnesses and pathologies, as well as in general ageing. So, a 1997 study in Italy looked at H1N1 flu and NAC treatment in a randomised, double-blind trial of 262 individuals of both sexes, most of them suffering from non-respiratory chronic degenerative diseases. They were divided into a placebo group and a NAC tablet group for a period of six months. No difference was found in both groups contracting the virus, but the majority of the placebo group (79%) came down with symptomatic forms, compared to only 25% of the treatment group, a significant difference. The study concluded that NAC treatment ‘appears to provide a significant attenuation of influenza and influenza-like episodes, especially in elderly high-risk individuals.’

So, recognising that this update is 2-3 months old now, I went online to see if NAC treatment is being used, or more comprehensive trials are being undertaken, as I note that, though case-rates are still disturbingly high, especially in the USA, death-rates are somewhat reduced.

An article from NCBI (the National Center for Biotechnology Information), which post-dates update 69 by a couple of weeks, presents only a hypothesis:

that NAC could act as a potential therapeutic agent in the treatment of COVID-19 through a variety of potential mechanisms, including increasing glutathione, improving T cell response, and modulating inflammation.

However, it didn’t seem as if any effective clinical trials focusing specifically on Covid-19 had been completed at the time of the article. A much more recent article (July 14) in Future Medicine (not such a promising name, given the urgency), presents more biochemical detail of NAC’s action, along with the anticoagulant heparin, and mentions ongoing clinical trials, but not specific results. It also mentions NAC treatment as a preventive for frontline ICU workers and general healthcare workers. It may be that such treatment is already being applied.

So, returning to update 69, Seheult cites another article from 2010 in Biochemical Pharmacology which showed that NAC inhibited viral replication (here the virus was H5N1) and reduced inflammatory cytokines, and again they suggested it as a potential treatment in the case of future influenza pandemics. Another small trial suggested some limited efficacy for NAC in the treatment of acute respiratory distress syndrome (ARDS).

So on it goes. A 2018 article found that ‘[NAC] improves oxidative stress and inflammatory response in patients with community acquired pneumonia [CAP]’. This oxidative stress reduction may be more important for Covid-19 cases because of the possibility of thrombosis due to the effect on VWF. A 2013 study found a significant decrease in a number of coagulation factors with NAC treatment. Of course, with this blood-thinning facility, NAC should not be used for patients with increased bleeding risk during or resulting from surgery. In any case I note that NAC is on the WHO list of most safe drugs or treatments.

And there are more studies. Another 2018 study found that NAC could reverse cerebral injury from strokes exacerbated by diabetes. The study concludes that ‘the diabetic blood and brain become more susceptible to platelet activation and thrombosis’, and that NAC appears to offer protection against the risk of stroke. The study’s explanation of the process here gives me an opportunity for further revision:

[NAC protects against stroke] by altering both systemic and vascular prothrombotic responses via enhancing platelet GSH, and GSH-dependent MG elimination, as well as correcting levels of antioxidants such as SOD1 and GPx-1.

So that’s platelet glutathione, and glutathione-dependent methylglyoxal, and the antioxidants mentioned are superoxide dismutase 1 and glutathione peroxidase 1. The ScienceDirect website does an amazing job of informing us about every known aspect of molecular biochemistry, just saying. Its material on glutathione and its catalysis is exhaustive and exhausting. And it looks as though the silver lining to the tragedy of Covid-19 may be a spike in further research into this and other essential elements of the molecular basis of immune systems.

Dr Seheult goes on to cite one more study, which found that ‘NAC administration promotes lysis of arterial thrombi that are resistant to conventional approaches…’, principally by acting on VWF, and that it is even more effective in combination with ‘a nonpeptidic GpIIa/IIIb (glycoprotein) inhibitor’, with no observed worsening of symptoms or outcome vis-a-vis normal haemostasis.

So I’ll end this piece wondering how things are going with NAC and other applications to reduce both respiratory and thrombotic symptoms in regions where the virus continues to be spread through a mixture of government, business and personal irresponsibility and stupidity. The battle to keep people alive and relatively healthy will, I think, ultimately win over the stupidity of some, but at a terrible and tragic cost. Vaccines are in the offing, but fear, indifference and ignorance will probably have the most adverse influence on their effectiveness.

References

Coronavirus Pandemic Update 69: “NAC” Supplementation and COVID-19 (N-Acetylcysteine)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261085/

https://www.futuremedicine.com/doi/10.2217/fmb-2020-0074

https://www.sciencedirect.com/science/article/pii/S0304416512002735

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/methylglyoxal

Written by stewart henderson

August 2, 2020 at 12:46 pm