Archive for the ‘renewable energy’ Category
more on gas prices in Australia, sort of
Coal, oil and gas are called fossil fuels, because they are mostly made of the fossil remains of beings from long ago. The chemical energy within them is a kind of stored sunlight originally accumulated by ancient plants. Our civilization runs by burning the remains of humble creatures who inhabited the Earth hundreds of millions of years before the first humans came on the scene. Like some ghastly cannibal cult, we subsist on the dead bodies of our ancestors and distant relatives.
Carl Sagan
Canto: So during an English conversation group that I’m for the moment in charge of, at our local community centre, we got onto the topic of how Australia finances itself, trade and business-wise. I made the claim that manufacturing in Australia has largely died (based on the fact that I’ve worked in or for six factories in my youth and not-so-youth, – Simpson-Pope, ATCO Structures, Wilkins Servis, Tubemakers of Australia, Ellis Wireworks and Griffin Press – none of which still exist, at least not in the same locations). I also said that our economy is now based largely on the exporting of coal, gas and other mineral resources. As always, I wasn’t sure if I was talking out of my arse, so it’s time for research… But not just about that. I went on to say, apropos of our plentiful gas resources, that we export most of the gas, which is why we pay such a high price for gas domestically. This led a Chinese member of the group to ask – how come? According to him, gas, and energy bills generally, come to much less in China than they do here. So what gives? That’s what we’re going to take a look at today.
Jacinta: Yes we’ve written about this before, in November last year, but I’m happy to revisit the issue, perhaps more thoroughly.
Canto: Well, since that piece was written, there’s been little in the news about the issue, it seems. Except that, in December:
… the Australian government passed a law imposing a price cap on domestic natural gas for 12 months, with the possibility of the cap becoming permanent after that.
Which I suppose is quite important, though it was capped at a high price, presumably compared to Chinese domestic prices.
Jacinta: Well you’ve just quoted from a piece by a writer from the Baker Institute for Public Policy, based at Rice University, a private research institute based in Houston, Texas. Rather surprising to see such a piece dealing with the Australian domestic market, from the other side of the world, so to speak. And it goes into great detail about the economics of price capping, which the author, Kelly Neill, describes as ‘poor policy’, at least in this instance.
Canto: Could they have an ideological bent? What about the poor consumer? I mean the consumer who is poor.
Jacinta: I’ve just read Neill’s bio, and she’s based in Australia:
… at the University of Sydney School of Economics. Her research has focused on competition in natural gas markets, particularly in Australia. She has studied how electricity and gas markets interact, vertical integration of gas retailing and shipping, and the consequences of restricting exports of liquefied natural gas. She is also interested in electricity reliability.
Canto: Sounds impressive. In fact I feel quite intimidated now. I mean, ‘vertical integration of gas retailing and shipping’ – what could that possibly mean?
Jacinta: It’s the opposite of horizontal integration, obviously. Pay attention mate. Seriously, it’s ‘the combination in one firm of two or more stages of production normally operated by separate firms’. Presumably gas retailing and shipping in this case. And Neill’s argument is complex, it seems – it’s a long article, and its complexity is beyond our pay grade (which is zero of course). It’s the kind of economics article that’s designed to be read by other economists, and, after a quick run-through, I see little or no mention of windfall profits by gas companies, the cost to residential consumers, or renewable energy. It does discuss future investment, and she certainly appears to believe that increased development of our gas resources is a very good thing, as if she’s never heard of ‘the Big Switch’ to electricity developed from renewables.
Canto: Yes it’s odd – we’ve mentioned how Chinese newcomers to Australia are wondering why domestic energy costs are so much higher here than in China. Neill focusses, though, on the big consumers:
the intention of the natural gas price cap is to provide relief to industrial gas users
That was news to me – I thought the government wanted to provide relief to impoverished types like you and me. But perhaps they want both. And she also expresses concern that caps will reduce the incentive to produce more fossil fuels. So she certainly has a business as usual attitude to such production, while I’m trying my darnedest to get our Housing Association to put solar panels on our roofs, and to get our gas cooker and hot water system switched to electric. And, as a consumer of science mags and podcasts, all I hear from them is how we must wean ourselves from gas, oil and coal. It seems that economists think differently.
Jacinta: She also writes things that slightly surprise me:
Australians own the country’s natural resources (through their governments), and as such are entitled to benefit from their extraction.
Which sounds good, but I thought these natural resources were owned by the companies that extracted them, via mining and such. Sort of like manufacturing. General Motors makes money from cars, BP makes money from oil. And sometimes these companies receive subsidies from government, to help maintain them, because they’re good for the economy, not only because they provide relatively cheap cars, or oil, for the country, but because that business gets to export the surplus (helped in some way by government) in exchange for goods that we need but can’t easily supply ourselves.
Canto: Yeah we’re not really very good at understanding this are we? I suppose the globalisation of the economy is why we don’t do manufacturing any more. The labour costs too much? Better to use cheap overseas labour and then import? And ratchet up the gig economy so that everybody has just enough work to not count in the unemployment stats? I’m sure the coffee and croissants market is booming. But getting back to gas, my understanding is that coal is rated the worst of the fossil fuels – not only for carbon emissions but most dangerous working conditions. And then it’s oil and then gas. So maybe Neill is right to discount the negatives, at least for the foreseeable.
Jacinta: According to the IPCC, in 2018, 89% of global CO2 emissions came from ‘fossil fuels and industry’, which is kinda vague, tacking on ‘industry’ like that. I mean, can transportation be counted as industry? And according to ClientEarth, natural gas accounts for a fifth of the world’s carbon emissions. By no means insignificant.
Canto: But I’m interested in learning a bit about economic-speak, inter alia, through analysing Neill’s essay. And after all that, we’ll try to find out why Chinese people are paying less for their domestic energy than we are. So here’s a quote from early in the essay which seems to sum up her position:
Forcing companies to sell on the domestic market at a lower price reduces the value of Australia’s gas resources — an opportunity cost that ultimately does more harm than good. Instead, it would be better to maximize the value of the resource and then choose a tax policy that does not affect investment.
The term ‘opportunity cost’ is economics jargon, meaning ‘the loss of other alternatives when one alternative is chosen’, but this idea of maximising the value of the resource would surely be music to the ears of the multi-millionaire gas company owners. And clearly she’s in favour of investing in gas. If I found out that my super fund had been investing in gas I’d be effing furious.
Jacinta: I’m sure they are – it’s a transitional fuel dontcha know. And there’s no doubt that Neill is in favour of our exploiting this resource. Look at this key paragraph:
The influence of the export price in the domestic market has increased over time as gas supply in southern states has declined. State governments in New South Wales, Victoria and South Australia share responsibility for this, with bans on new developments contributing to the decline in gas production. If produced, southern gas could be sold at a discount to the LNG export price, because southern gas would be further from the export plants and closer to demand centers. Indeed, if gas supply was large enough that LNG export plants were at capacity, the domestic price would again de-couple from the export price.
As a South Australian, taking pride in our leading the country in renewables, I’m somewhat nonplussed/gobsmacked at this slap. So I should read the whole piece to see if she has any interest in or knowledge about the existential global warming crisis that is currently enveloping us, and the contribution of LNG and other fossil fuels to this crisis. But I’m not hopeful.
Canto: So next she’s on about supply issues:
Global LNG supply is inherently inflexible, because increasing liquefaction capacity is costly and slow, and the market remains illiquid, particularly in Asia.[5] Investors know that small increases in demand can create large increases in price. (The converse is also true, small declines in demand create large price falls.)
Whatever that means.
Jacinta: Yes, I’m not sure if she means that the gas remains illiquid. Gas is gas after all, not liquid. But there’s also the term ‘liquid assets’ in economics…
Canto: Yes I hadn’t noticed that. ‘Liquid Natural Gas’ is essentially self-contradictory…
Jacinta: It’s liquified natural gas. And ‘liquefaction capacity’ means ‘the capacity of an LNG facility, measured in terajoules per day, to liquefy natural gas to produce LNG’. So Neill is pointing out, I think, that there’s a market inflexibility because it’s costly to liquify gas, especially in Asia. But saying that the market remains illiquid does create a bit of confusion. But I wonder what this economist thinks of Australia’s RenewEconomy. I notice they have an essay posted a few days ago from Giles Parkinson, an indefatigable RenewEconomy journalist, entitled ‘It’s time to get SwitchedOn and kick gas out of the system: Our future depends on it‘ – SwitchedOn referring to a series about electrification they’re publishing….
Canto: But I think, to be fair, Neill is clearly aware that our economy is currently highly reliant on our gas exports, just as Norway’s economy is highly reliant on its fossil fuel exports.
Jacinta: Good point. Could we kick gas out of the domestic system while exporting endless terajoules of the stuff? Isn’t that what Norway is doing? They get most of their domestic energy from hydro.
Canto: Seems a bit hypocritical I suppose, and here in South Australia we don’t have hydro, but we’ve worked hard to get more of our energy from renewables. We’re still reliant on gas for almost half our energy, but wind and solar together make up the rest – more than half. That’s only going to increase. I’ve now read the whole of Neill’s essay, and she’s made absolutely no mention of renewables. Maybe she’s been living under a rock for the past 30 years, but most likely it’s deliberate – which doesn’t mean she’s anti. She might just have decided to limit her focus on gas.
Jacinta: Well, maybe so, but she’s clearly in favour of more investment in gas, and encouraging more exploration of the stuff. That fact that she ‘blames’ South Australia and other states for not producing more of this fossil fuel, which the IPCC is insisting we should not be producing if we’re to avoid catastrophic global warming, is evidence enough of her contempt for the science, surely.
Canto: But I’ve seen her picture and she looks so cute…
Jacinta: […]
Canto: Anyway we didn’t get round to why energy costs more here, domestically, than in China. Next time perhaps.
References
https://www.bakerinstitute.org/research/why-natural-gas-price-caps-australia-are-poor-policy
It’s time to get SwitchedOn and kick gas out of the system: Our future depends on it
nuclear fusion developments 2 – replicating the stars

ITER, in southern France, while under construction
Returning to nuclear fusion, I’m focussing here on the recent Royal Institute lecture mentioned in my previous fusion post (all links below). Dr Melanie Windridge starts off with the well-known point that we’re currently failing to reach projected targets for the reduction of global warming, with current national pledges taking us to 2.4 degrees C by century’s end (the target, remember, is/was 1.5°C), with energy demand rising, and energy security issues due to political instability, among other problems.
Windridge’s pitch is that, yes, we must keep on with all the possible green solutions, but fusion is the transformational solution the world needs. It potentially produces no CO2, an abundant supply of fuel, in a safe, controlled process with no long-term radioactive waste. It would also potentially produce firm, non-intermittent, base-load power – less redundancy in the grid (I probably need to do a whole post on this) – which would be more economical in the long term. Also, decarbonisation is about much more than electricity, which apparently is only about 20% of the electricity market. The other 80% is much harder to decarbonise. Windridge lists some of them – industrial heat, aviation and shipping fuels, and desalination – which I hope to explore further in another post. There’s also the opportunity, if we could develop an effective fusion energy system, with limitless clean energy, of undoing the damage already done. Current projections show that there will still be fossil fuel-based energy in the mix in 2050. This is a challenge for those interested in pursuing the fusion solution. ‘Fusion can address the fossil fuel gap’, one of Windridge’s graphs suggests. The aim, it seems to me, is that fusion will be ‘ready’ by mid-century, at which time it will be transformative or, as Windridge says ‘we need a solution with immense potential’. But prediction is tricky, especially about the future, and as a sixty-something optimist, I can only hope that I can live and be compos mentis enough to witness this transformation.
Frankly, it’s amazing that we can be considering this type of energy, a result of relatively recent understanding of our universe. As Windridge points out, the only other form of energy that is more energy-dense is matter-anti-matter annihilation (from the first few seconds after the ‘Big Bang’) – I can well imagine future researchers and engineers trying to create a Big Bang under controlled conditions in some hyper-complex cybernetic laboratory. I wouldn’t be surprised if an SF author has already written a story…
High energy density is doubtless the holy grail of future energy technology. Windridge gives a nice historical account of this – something that Gaia Vince’s Transcendence has helped me to focus on. The industrial revolution, which began in Britain, moved us from animal energy in joules per gramme to chemical energy in kilojoules (one thousand joules per gramme). This gave Britain a fantastic edge over the rest of the world, and was the vital element in creating the British Empire. Nuclear energy, which takes us to gigajoules (billions of joules) per gramme, and which, thankfully, is being pursued internationally, and hopefully collaboratively, is a breakthrough, if it works out, comparable to the invention of fire. One kg of fusion fuel can provide as much energy as 10 million kg of coal, so it would make sense to concentrate much of our collective ingenuity on this zero-carbon form of fuel.
There are different pathways. Aneutronic fusion, as the name suggests, doesn’t rely so much on neutron energy, with its associated ionising radiation. Alpha particles or protons carry the energy. An Australian company, HB11 Energy, is using lasers to drive a low-temperature proton-boron fusion system, which is showing some promise, and deuterium-helium-3 is another combination, but currently deuterium and tritium is the easiest reaction to obtain results from. Now, considering the power of the sun, which is so energetic that, according to BBC Science Focus, ‘the Earth would become uninhabitable if its average distance from the Sun was reduced by as little as 1.5 million km – which is only about four times the Moon’s distance from Earth’, it should be pretty clear that recreating that kind of energy here on Earth’s surface is fraught with problems. The fusion ‘triple product’ for producing this energy is apparently heat, density and time. So to achieve the product in a ‘short’ time, for example, we need to tighten the other parameters – more heat and density. Safely producing temperatures much higher than those in the sun for any extended period would presumably be quite a feat of engineering. The different designs and approaches currently include tokamaks, stellarators, inertial confinement (using lasers) and magneto-inertial fusion. The inertial confinement laser model focuses lasers on a small fuel pellet, causing it to implode and produce ‘fusion conditions’.
It’s all about producing plasma of course – the so-called fourth and most energetic state of matter. Electrically-charged particles which make up over 99% of the visible universe. These charged particles spin around magnetic field lines, so allowing us to use magnetic systems to control the material. We’ve used plasma in neon lights for over a century, and its production was first demonstrated by Humphrey Davy in the early 1900s – something to explore…. Plasma is also a feature of lightning, a ‘bolt’ of which can strip electrons from the immediately surrounding air. This means that air is ionised and can be manipulated magnetically. Tokamaks and other magnetic devices operate on this principle.
Inertial confinement uses shock waves or lasers to ‘squeeze’ energy out of a pellet of fusion fuel. The point at which such energy is produced is called ignition. Think of a bicycle tyre heating up as you pump it up to a higher pressure, until the tyre explodes – sort of.
So – and I’m heavily relying on the Windridge public lecture here – fusion research really began in the fifties, generally in universities and public labs. This early work has culminated in two major public projects, ITER (the International Thermonuclear Experimental Reactor), with its ultra-massive tokamak located in the south of France, and NIF, the National Ignition Facility, located in California. which made headlines last December for ‘the first instance of scientific breakeven controlled fusion’. This involved bombardment of a pellet ‘smaller than a peppercorn’ to produce a non-negligable energy output for a very brief period.
All of this has been at great public expense (why weren’t we told?), so in more recent times, private investment is moving things along. The last couple of years has seen quite a bit of progress, in both public and private facilities. For example, JET, in Oxfordshire, produced 59 megajoules (59,000,000 joules) of fusion energy, sustained for 5 seconds, a world record and a proof of concept for more sustainable energy production. And at NIF last year they produced ‘ignition’, the whole point of the facility, producing more fusion energy than the laser energy used to drive the process, a proof of concept for controlled fusion. And even more recently, China set a new record at their EAST tokamak (don’t you just love these territorial names), attaining steady-state ‘high performance’ plasma for about 6.5 minutes (I don’t know what high performance plasma is, but I can perhaps guess). And there is a lot of work going on in the private space too (I’ll be looking at Sabine Hossenfelder’s appraisal of the field in a future post, all in the name of education), with a really notable increase in private investment and start-ups – about half of the world’s private fusion companies today are less than 5 years old. Some $5 billion has been invested, from energy companies like Shell and Chevron, but also a variety of other organisations familiar to capitalists like me.
Why is this happening? Clearly we have a greater consensus about global warming than existed a decade ago. Also the science of fusion has reached a stage where rich people and organisations are sensing the opportunity to make even more money. Windridge also talks about ‘enabling technologies’, recent engineering and technological developments such as high-temperature superconductors, diode pumps for lasers, and various AI breakthroughs and improvements. Mastering and streamlining these developments will ultimately reduce costs, as well as expanding the range of the possible. National governments are developing regulatory frameworks and ‘fusion strategies’ – the latest coming from Japan – often involving public-private partnerships, such as the UK’s Fusion Industry Programme. The UK has also created a facility called STEP – the Spherical Tokamak for Energy Production – run by the Atomic Energy Authority, which is described by Windridge as the world’s first pilot nuclear energy plant.
So in the next post on this topic I’ll be trying to get my head around the developments mentioned above, FWIW. And it is definitely worth something. If we can get it all right.
References
Gaia Vince, Transcendence, 2019
https://en.wikipedia.org/wiki/Aneutronic_fusion
https://www.psfc.mit.edu/vision/what_is_plasma
https://fusionenergyinsights.com/blog
a glut of greed – on high gas prices and who’s to blame

Crisis? What crisis….?
So Australia’s industry minister Ed Husic has come out with a claim that I’ve heard from renewable energy journalists more than once before in recent times – that the gas industry is pocketing record profits while households suffer from record power costs. So what exactly is happening and how can it be fixed?
Husic’s remarks were blunt enough: ‘This is not a shortage of supply problem; this is a glut of greed problem that has to be basically short circuited and common sense prevail.” As I reported before, gas companies are more interested in exporting their product overseas, at great profit, than selling it domestically. All the major news outlets are reporting much the same thing – the political right, under conservative leader Dutton, is blaming the overly-rapid shift to renewables (he wants to open up more gas fields), and gas companies are playing the victim role.
The ACCC has been complaining for some time that there isn’t an effective mechanism to prevent gas companies from selling to the highest bidder, at the expense of the local market. There are, of course, worldwide gas shortages, causing the value of the commodity to shoot to record highs. The Financial Review reported on the situation back in July:
The ACCC says prices for east coast domestic gas that will be delivered in 2023 have rocketed to an average of $16 per gigajoule from $8 per gigajoule. Exporters have also dramatically widened the spread of prices offered to domestic buyers from between $7 and $8, to between $7 and as much as $25. This is despite the fact that the estimated forward cost of production is steady at just over $5.
The government clearly has little control over gas exporters – ‘gentlemen’s agreements’ aren’t really cutting it, and domestic costs are affecting businesses as well as households, adding to the many woes of local manufacturing. So I’ve turned to the ever-reliable Renew Economy website in the hope of hearing about plausible solutions. Their journalist Bruce Robertson, of the Institute for Energy Economics and Financial Analysis, is arguing for a gas reservation policy:
Such a policy on new and existing gas fields means gas companies must sell a portion of their gas into the domestic market – rather than putting it all out for export – with an immediate downward effect on prices. Similar to the reservation policy in place for over a decade in Western Australia, the east coast gas reservation policy could be set at $7 a gigajoule (GJ), a price allowing gas companies to achieve a profit over and above a return on investment. In turn, energy consumers would see their electricity bills cut.
It sounds like magic – like, if it’s that easy why wasn’t it done ages ago? The reason Robertson appears to be putting forward is price-fixing and the unwillingness of east coast governments, and the federal government, to deal with it:
In Australia, gas prices are fixed by a cartel of producers on the east coast… – Shell, Origin, Santos, Woodside and Exxon. For decades they have set the price above international parity prices.
It does seem, well, a little unseemly, that Australia, the world’s largest LNG exporter, is having to pay such exorbitant prices for domestic usage – though, in fact, other countries are suffering more. Locally though, South Australia, where I live, is particularly hard hit. Unlike the eastern states, coal plays no part in our energy mix – it’s all gas and renewables, with wind and solar playing a substantial part, more so than in the eastern states. And yet… Sophie Horvath reported in Renew Economy back in May:
A draft report from the SA Productivity Commission finds that despite the state’s solar and wind delivering some of Australia’s lowest wholesale spot prices, prices faced by the state’s consumers were around 20% higher than consumers in New South Wales. And it warns that without the rapid implementation of market and policy reforms, the situation for consumers will only get worse as more and more renewable energy capacity is added.
This sounds, on the face of it, as if SA’s take-up of renewables has backfired, but the situation is rather more complex, as Horvath explains. One problem is variable demand, which ‘produces challenges for the grid’, and another, highlighted by the SA Productivity Commission, is the ‘various market flaws that are stopping the benefits of renewables being passed through to consumers’.
So what are these market flaws? And what are ‘wholesale spot prices’ and why are they so different from the costs to suckers like us? Here’s an excerpt from a ‘Fact Sheet’ from the Australian Energy Market Commission about how the spot market works:
The National Electricity Market (NEM) facilitates the exchange of electricity between generators and retailers. All electricity supplied to the market is sold at the ‘spot’ price…. The NEM operates as a market where generators are paid for the electricity they produce and retailers pay for the electricity their customers consume. The electricity market works as a ‘spot’ market, where power supply and demand is matched instantaneously. The Australian Energy Market Operator (AEMO) co-ordinates this process.
The physical and financial markets for electricity are interlinked. Complex information technology systems underpin the operation of the NEM. The systems balance supply with demand in real time, select which generators are dispatched, determine the spot price, and in doing so, facilitate the financial settlement of the physical market. And all this is done to deliver electricity safely.
So far, this bureaucratic lingo doesn’t inspire confidence. Complex systems synchronise and balance everything, both financially and powerfully, ensuring our safety. Praise the lord. This Fact Sheet, from early in 2017, goes on for three and a bit pages, and I’m trying to understand it. Maybe Ed Kusic is too.
Meanwhile, back in South Australia, it was reported a few months ago that…
Tens of thousands of SA households are set to be hit with increased electricity bills after the energy industry watchdog made the ‘difficult decision’ to increase benchmark prices by hundreds of dollars a year.
So why indeed was this decision so ‘difficult’? The Australian Energy Regulator (AER – there are a headachy number of acronyms in this business), which sets the Default Market Offer (DMO) – a price cap on the charge to customers who, shockingly, don’t bother to shop around for a better deal – has increased the cap due to an 11.8% increase in wholesale electricity costs ‘driven by unplanned power plant outages and the ongoing war in Ukraine’. The fact that SA experienced massive power outages in the last 24 hours due to extreme weather conditions won’t help the situation. The Chair of the AER, Clare Savage, advises shopping around for cheaper deals rather than just accepting the DMO. The AEC (groan) also recommends shopping around, and even haggling for a better deal from retailers. The state government, in response to criticism from the opposition, emphasises focusing on the long-term and the ongoing shift to renewables. State energy minister Tom Koutsantonis expresses his faith – “Our government will reactivate investment in renewables as a hedge against price shocks on fossil fuels”.
Great – I can’t wait.
References
SA renewables surge bringing down energy prices, but consumers miss out
our electric future – is copper a problem?
So I recently had a conversation with someone who told me that electric vehicles were not the future because – copper. I must admit that I immediately got tetchy, even though I knew nothing about the ‘copper problem’, or if there actually was one. My interlocutor wasn’t anti-green in any way, he was more into electric bikes, tiny-teeny cars, and people staying put – not travelling anywhere, or not far at least. Perhaps he imagined that ‘virtual travel’ would replace real travel, reducing our environmental footprint substantially.
It has struck me that his rather extreme view of the future was an example of the perfect being the enemy of the good. I’m all for electric bikes, car-sharing and even a reduction in travelling, within limits (in fact migration has been associated with the human species since it came into being, just as it has with butterflies, whales and countless other species) but although I note with a certain disdain that family cars are getting bigger just as families are getting smaller (in our WEIRD world), I have no faith whatever that those family cars are going to be abandoned in the foreseeable.
But getting back to copper, the issue, which I admit to having been blind to, is that with a full-on tilt to electrification, copper, the world’s most efficient and cheaply available electric conductor, might suddenly become scarce, putting us in a spot of bother. But will it? That depends on who you talk to. Somehow the question brings back to mind David Deutsch’s The beginning of infinity, a super-optimistic account of human ingenuity. Not enough copper? No problem we can’t engineer our way out of…
Currently demand for copper is outstripping supply, but will this be a long term problem? CNBC made a video recently – ‘Why a looming copper shortage has big consequences for the green economy’ – the title of which, it seems to me, is more pessimistic than the content. Copper has been an ultra-useful metal for us humans, literally for millennia. But its high conductivity – second only to silver, which presumably is more rare and so far more expensive – has made it the go-to metal for our modern world of electric appliances. It also has the benefit of being highly recyclable, so it can be ripped out of end-of-life buildings, vehicles and anything else and re-used. But EVs use about four times more copper than infernal combustion vehicles, and wind turbines as well as solar panels require lots of the stuff, as do EV charging stations, and there aren’t too many new copper mines operating, so…
From what I can gather online, though, there’s no need for panic. Apparently, we’re currently utilising some 12% of what we know to be available for mining. The available stuff is the cheap stuff, and until now we’ve not really needed much more. But new techniques of separating copper from its principal ore, chalcopyrite, look promising, and markets appear to be upbeat – get into copper, it’ll make your fortune!
There’s also the fact that, though things are changing, the uptake of EVs is still relatively slow. People are generally talking about crunch time coming in that vaguely defined era, ‘the future’. High copper demand, low supply seems to be the mantra, and all the talk is about investment and risk, largely meaningless stuff to impoverished observers like me. In more recent times, copper prices have dropped due to ‘a manufacturing recession caused by the energy crisis’. I didn’t know about either of these phenomena. Why wasn’t I told? Mining.com has this to say about the current situation, FWIW:
Copper prices typically react to the ebb and flow of demand in China, which accounts for half of global consumption estimated at around 25 million tonnes this year. But this time the focus is on Europe, accounting for 15% to 20% of the global demand for copper used in power and construction. The region is facing surging gas and power prices after energy supply cuts, which Russia blames on Western sanctions over the Ukraine conflict. The European Union has made proposals to impose mandatory targets on member countries to cut power consumption.
Make of this what you will, I have quoted the most coherent passage in a mire of economics-speak. Presumably, supply is affected by the volatile conditions created by Mr Pudding’s testosterone. So everybody is saying that copper is falling in price, and this is apparently bad. Here’s another quote to make sense of:
Due to closing smelters and falling demand from manufacturers, an excess of copper stockpiles has been building up in a number of Shanghai and London warehouses, also contributing to downward pressure on prices.
Meaning copper isn’t worth much currently, though this is probably a temporary thing. Glad I haven’t anything to invest.
I think the bottom line in all this is don’t worry, be happy. Copper availability for the energy transition is subject to so many incoherent fluctuations that it’s not worth worrying about for the average pundit. Here in Australia the issues are – you can solarise your home no worries. Buying an EV is another matter, since none are being manufactured here, so governments need to be pressured to create conditions for a manufacturing base, and the infrastructure to support the EV world. Storage and battery technology need to be supported and subsidised, as is in fact starting to happen, with a more supportive federal government, and state Labor governments here in South Australia, and in Western Australia, Queensland and Victoria.
So, to conclude, having read through quite a few websites dealing with copper as the go-to metal for the transition to green energy (some links below), I haven’t found too much pessimism or concern about Dr Copper’s availability, though there are clearly vested interests in some cases. Australia, by the way, has the second largest copper reserves in the world (a long way behind Chile), and this could presumably be turned to our benefit. I’m sure a lot of magnates are magnetised by the thought.
References
https://oilprice.com/Energy/Energy-General/A-Copper-Crisis-Threatens-The-Energy-Transition.html
https://intellinews.com/ev-market-may-create-copper-deficit-219864/
an interminable conversation 12: more on hydrogen, and wondering about local power costs

filched from an anti-global warming dinosaur – all’s fair….
Jacinta: So we’ve learned a lot about the problems with hydrogen as a potential fuel, and its problems as a chemical, in the production of fertiliser, in the petrochemical industry, and the need to clean up such usage, for example the contribution of ‘fugitive methane’ to carbon emissions. We also learned that carbon capture and storage, mooted for decades, seems to be going nowhere, largely due to its unprofitability re the private sector…
Canto: So now we’re going to listen to Rosie Barnes, of “Engineering with Rosie”, at a Hydrogen Online Conference, one of many interactive conferences apparently being planned. I’ve heard Rosie before, expressing some skepticism about hydrogen in general, so I’m surprised that she’s prepared to enter the ‘lion’s den’ of what I naturally presume to be hydrogen advocacy.
Jacinta: Yes I’m not sure I want to listen to the post-talk interactive session of this video, as I’m a bit squeamish about confrontation. Why can’t everybody just be nice and agree about everything?!
Canto: Yeah well Rosie begins with the question – which hydrogen projects should we prioritise? And she also mentions the hydrogen energy supply chain, which is apparently a liquid hydrogen transport project between Australia and Japan, about which I know nothing.
Jacinta: Though actually we did write about this before, in a piece that now seems haplessly naive (linked below, FWIW). Anyway, the ScienceDirect website has this ‘headline’ in its overview of liquid hydrogen:
Production of liquid hydrogen or liquefaction is an energy-intensive process, typically requiring amounts of energy equal to about one-third of the energy in liquefied hydrogen.
which don’t sound promising.
Canto: But Rosie seems to think the hydrogen future is a bit more rosy these days. Another focus of her talk will be ‘giga projects’, presumably meaning ginormous projects, such as the ‘Asian renewable energy hub’ and the ‘western green energy hub’, about which more research is needed – by us.
Jacinta: So she was hearing a lot of hype, mainly from politicians, a couple of years ago, about all sorts of hydrogen ‘applications’, but mainly about ‘power system balancing’, which hopefully we’ll hear more about – maybe to do with balancing for the variability of wind and solar – and for vehicular transport. And clearly she didn’t get it, especially in respect of other applications, no doubt, such as home heating. I mean, why hydrogen?
Canto: Indeed. She identified four red flags at the outset – and we need to dig deeper into these. First, ‘will developers keep building wind and solar if prices are negative?’ I don’t know what that means…
Jacinta: Economics is definitely not our strong suit. Actually we don’t have a strong suit. So here’s Wikipedia:
In economics, negative pricing can occur when demand for a product drops or supply increases to an extent that owners or suppliers are prepared to pay others to accept it, in effect setting the price to a negative number. This can happen because it costs money to transport, store, and dispose of a product even when there is little demand to buy it.
Canto: So it’s not immediately clear what that has to do with hydrogen, but let’s mention the other 3 red flags: 2 – will negative electricity prices persist? 3 – round trip efficiency, and 4 – the head start for and rapid improvement of other renewable technologies. Just putting those out there for now.
Jacinta: The questionable nature of the first one is – if electricity production becomes virtually free (negative pricing) then hydrogen production will be virtually free too, using renewables. I think. So the first two red flags are clearly connected. Businesses need to be profitable, so they won’t build (wind or solar) if there’s no market or if the market is saturated. With green hydrogen anyway, the production costs are, or have been quite extreme and those costs would have to come down by a factor of three to be equivalent to ‘dirty’ hydrogen production, to say nothing of cheaper electricity competing for the grid. To wait for the energy to be ‘negatively priced’ and only then use it for electrolysis seemed risky and possibly unworkable. A lot of equipment, etc, for little return.
Canto: Much of this was looking back at 2020 – not so long ago – and looking to Germany as an example of a highly renewable grid, but now she considers our Australian state – South Australia, which produces a lot of wind, first, and solar, second. Over the past 12 months, 65% or so of our grid electricity has been from renewables. Largely wind and solar, rather than base-load renewables (meaning nuclear perhaps, in the case of Germany?)
Jacinta: Yes, presumably nuclear, also hydro could be base load, as presumably it is in Tasmania. Rosie mentioned that we don’t have a lot of geothermal, and that rather shocked me, as I thought there wasn’t much geothermal anywhere, that it was one of those eternally future technologies….
Canto: The USA’s EIA (Energy Information Administration) tells us more:
The most active geothermal resources are usually found along major tectonic plate boundaries where most volcanoes are located. One of the most active geothermal areas in the world is called the Ring of Fire, which encircles the Pacific Ocean.
Most of the geothermal power plants in the United States are in western states and Hawaii, where geothermal energy resources are close to the earth’s surface. California generates the most electricity from geothermal energy. The Geysers dry steam reservoir in Northern California is the largest known dry steam field in the world and has been producing electricity since 1960.
Jacinta: Well, thanks for that. Something new every day…
Canto: So Rosie tells us we have had persistent negative electricity prices in SA – which is interesting considering that our household bills are painfully high. She presents a couple of graphics that I don’t fully understand… I certainly can’t understand negative pricing. Clearly not talking about consumers…
Jacinta: I’d like to know why our electricity costs are so high. Right now please. We can get back to Rosie later.
Canto: Well it’s a worthwhile detour to pursue, but it’ll require a bit of research. So maybe next time. So having watched Rosie’s not-so-rosey presentation, without watching the Q & A, because I tend to be a bit squeamish about that format, I find myself wondering…. there was little mention of Prof Cebon’s concerns about the questionable future of blue hydrogen and CCS, or of the problem of fugitive methane in the production of hydrogen from natural gas, or of the obvious failure in the take-up of hydrogen for passenger transport, or of the cost and difficult logistics of hydrogen compression and transport. And as to its possible use in storage, the battery solution seems more likely, surely?
Jacinta: She did point out, either in this talk or her earlier one, that hydrogen often looks like a solution looking for a problem, and this seems surely to be the case for hydrogen fuel-cell vehicles. It seems that EVs have won that race, and the improvements continue to be rapid. Well, we might pursue the hydrogen issue, and why so many people are hooked on hydrogen, and the details of hydrogen production, and many other issues relating to renewables, for a while yet, but let’s have a look at the cost of energy here in South Australia, where rooftop solar is very popular, and wind farms are kicking up a storm, but our electricity bills are still painfully high….
References
https://www.sciencedirect.com/topics/engineering/liquid-hydrogen
an interminable conversation 5: the RET, Mike Cannon-Brookes, and Big Gas issues
Jacinta: So I’ve heard of this thing called the Renewable Energy Target (RET) – in fact I first heard about it years ago but I’ve paid little attention. Tell me more.
Canto: There’s a government website, the Clean Energy Regulator site, which purports to explain everything. Here’s the briefest statement about it:
The Renewable Energy Target is an Australian Government scheme designed to reduce emissions of greenhouse gases in the electricity sector and encourage the additional generation of electricity from sustainable and renewable sources.
Of course they have much more to say, in positive-speak, about it all, but a wee footnote at the bottom caught my attention:
In June 2015, the Australian Parliament passed the Renewable Energy (Electricity) Amendment Bill 2015. As part of the amendment bill, the Large-scale Renewable Energy Target was reduced from 41 000 GWh to 33 000 GWh in 2020 with interim and post-2020 targets adjusted accordingly.
I believe the ultra-conservative Tony Abbott was PM in 2015, and the Fossils were calling the shots, as Marian Wilkinson’s The Carbon Club relates. Anyway, it’s a certificate system based on megawatt hours of power generated, and the rather pathetic target was apparently reached, based on approvals of large solar and wind installations, in the second half of 2019.
Jacinta: That’s something perhaps, but the IPCC wasn’t particularly impressed. The Clean Energy Council’s website, Ecogeneration, has boosted the achievement, describing the RET as ‘the most successful emissions reduction policy of all time for Australia’s electricity system’. But it hasn’t had any competition! And ominously, Kane Thornton, CEO of the Clean Energy Council, is quoted as saying ‘the industry doesn’t need new subsidies, we just need certainty’, etc etc, which contradicts everything I’ve heard from Saul Griffith, Mike Cannon-Brookes and others… we’ve been subsidising the fossil fuel industry forever, haven’t we? It’s rebuilding our manufacturing base that needs subsidising. Renewable energy has already become the cheaper option, but we have no EV manufacturing here and only one PV manufacturer.
Canto: Interesting Mike Cannon-Brookes interview in the Financial Review, which introduces the term ESG to me. This stands for Environmental, Social and Governance, perhaps in that order, as factors to be considered in any investment. Which all sounds v positive. And he’s very positive about ESG, which is a positive thing.
Jacinta: Yeah, apparently he’s a billionaire. How the fuck do people become billionaires? Why is it ever allowed?
Canto: Yeah, obviously it’s not just about working hard, like the Congolese in the diamond mines, and various slave populations over the centuries, whose only reward was death. Nature just ain’t fair. Herr Cannon-Brookes is co-founder of a company called Atlassian, which I’ve never heard of. Nor have I heard of their major products, such as Jiro and Trello, which are used by ‘teams’, but I don’t think they play soccer.
Jacinta: Sounds like they’re in the business of business, which is certainly none of our business.
Canto: Yeah, it’s probably all about digital environments. We’re about 40 years out of date. We need to stop reading books, paper is so 20th century.
Jacinta: Anyway, getting back to renewable energy …
Canto: Well this interview with Cannon-Brookes, he sounds pretty sincere, for a billionaire. They’re just people I suppose. If a bit weird. He’s very positive about renewables, and running his business that way, and pretty honest about the issues – like offloading the problem onto others, as he admits to having done, and facing that issue squarely. You know, like Australia exports coal and gas, and doesn’t take responsibility for the emissions. Like Norway.
Jacinta: They don’t have to take responsibility, the way the current system works. Apparently, as of July 2020, Australia became the world’s biggest gas (LNG) exporter, overtaking Qatar. That’s from the Climate Council. It’s hard to keep track of all these organisations. Anyway, Australia was exporting about 80 million tonnes of LNG per year two years ago. According to the latest, it was 77.7 MT (in 20-21 financial year). The article said it has ‘retained its crown’ as the world’s largest exporter. Shouldn’t that be a dunce’s cap?
Canto: So many people are late in getting with the program. By the way, China has taken over from Japan as our number one LNG buyer – adding to our problems with that fascist government. In any case the argument would be – and I’ve heard it stated in a public forum – that we owe our wealth as a nation to these exports, and by extension, to our trading relation with China. .
Jacinta: Well, it’s interesting that the price of gas is rising domestically. Presumably this has something to do with so much of our gas going offshore? And renewables, though growing, are hardly ready to fill the domestic energy gap, right?
Canto: So this is all new stuff to get my head around, but a ‘Bloomberg Green’ video linked below has it that the Australian Competition and Consumer Commission (ACCC) has produced an interim gas report, a forecast for 2023. It predicts that the supply of gas for next year will fall short of demand by about 56 petajoules – 3% of total demand. This doesn’t sound like much, but with rising gas prices… Anyway the ACCC is recommending that the federal government bring into force the ‘Australian Domestic Gas Security Mechanism’, pressuring LNG exporters to reserve some of those earmarked exports (70 to 75 percent of production) for the domestic market. Now, some 11% of those exports aren’t covered by long-term contracts – they’re available for those as bids for them, and there might be a few countries bidding, considering the global situation.
Jacinta: Hmmm, sounds like a seller’s market, with impoverished buyers, including domestic ones. So the idea is that the government can intervene to force gas exporters to sell some of their stuff here, with reduced profits?
Canto: Yes, but whether they do is a question. The video goes on to talk about Australia’s new emissions reduction target of 43% on 2005 levels by 2030, with the aim of net zero emissions by 2050. Interestingly, the Bloomberg economist says that while it’s good news to get clear targets after years of nothing much, the targets are still a bit weak. Most notably, only 3% of passenger vehicles sold last year were EVs, and with no manufacturing here in the foreseeable future, the chances of EVs reaching 89% of sales by 2030 – Labor’s target – are surely minuscule.
Jacinta: Yes, but all the other cars purchases would be overseas-made vehicles, wouldn’t they?
Canto: Hmmm, so there might have to be legislation to favour EV imports, as well as plenty of infrastructure… And a turnaround in public attitudes, which I don’t presently see.
Jacinta: Returning to gas, the Australia Institute, which appears to be a left-leaning public policy think tank, has a critique of our gas exporters in another, very brief, video. It just advises turning our backs on gas tout de suite. Forget reserving gas for the domestic market – which might involve something more or less in the form of a bribe to the exporters. Instead, electrify everything, of course. More pronto than pronto, to make up for a lost decade of relative inaction. They describe it as a gas export crisis, in which domestic prices are soaring because so much of our gas is going offshore. A win-win for the gas companies.
Canto: So, is this the situation? Gas companies are in the business of profit. They sell gas overseas, even at the expense of the domestic market, because they can, because they’re owned by private individuals, they can sell to the highest bidder. And If this means gas is scarce domestically, and in high demand, because we’ve become dependent on gas, we haven’t been weaned off it, the gas companies can make another killing on the domestic market? They’re holding us to ransom, so to speak?
Jacinta: Oil and gas companies in the US as well as in Australia are making huge profits currently, due to scarcities caused by war, embargoes and such…
Canto: The Australian Domestic Gas Security Mechanism was designed to ensure sufficient domestic supply, but it’s not very efficient, and the domestic supply target is too low. Some state governments, notably Western Australia, have a higher domestic reserve, but of course what we need is to switch to renewable-based electric as quickly as possible, to get out from under the control of the fossil fuel barons.
Jacinta: Are gas companies subsidised here?
Canto: Do koalas shit in the trees? Renew Economy has a scathing article about this, posted today. It describes companies like Santos recording super-massive-record profits this year, and the term ‘war profiteering’ is mentioned. This has also been at the expense of the domestic market. Here’s a quote:
Santos categorically stated its project would not affect the domestic market because it would not buy gas out of the domestic market. But that is exactly what it has done. Santos bought large volumes of gas out of the domestic market in the first half of 2022, forcing domestic prices above export prices in the last six months. These actions have generated super profits, gouged from domestic gas consumer and forcing up domestic electricity prices to unaffordable levels. Santos has broken its approval conditions and IEEFA calls on the government to cancel their export licence.
The IEEFA, for our info, is the Institute for Energy Economics and Financial Analysis. Bruce Robertson, who wrote the Renew Economy article, has a similar piece on the IEEFA website. The thing is, the domestic reserve could be raised, and made non-negotiable (it isn’t at present) without having much of an effect on these windfall profits. As it is, gas companies are largely ignoring existing reserve requirements. The ACCC has the capacity to prosecute but apparently has no intention of doing so. They’re also doing nothing to tackle these companies’ collusion re price-fixing and tax avoidance. There’s something rotten about all this. Clearly we’re not going to wean ourselves from gas as quickly as we should, but we certainly shouldn’t be pumping up and sending off ever more of the stuff.
Jacinta: Well, yes, considering that the aim is to electrify everything, and people are starting to get on board with this, that means no new gas fields, so what are these companies going to do with these massive extra profits, other than line the pockets of CEOs and their immediate underlings?
Canto: Well, there will still be offshore markets for the foreseeable, so keep on despairing. Two months ago, the Sydney Morning Herald ran an opinion piece by Tony Wood of the Grattan Institute, arguing for a ‘windfall profit tax’ considering that some importers are paying ‘more than four and up to 10 times the contract prices’. The Federal Treasurer, Jim Chalmers, isn’t interested. And so the rich get richer, for the time being….
References
https://www.cleanenergyregulator.gov.au/RET/About-the-Renewable-Energy-Target
Marian Wilkinson, The Carbon Club, 2020
What the frack? Australia overtakes Qatar as world’s largest gas exporter
Santos windfall: Australia is swimming in subsidised gas and we’re giving it away
https://ieefa.org/resources/why-government-must-break-eastern-australias-gas-cartel
some stuff on super-grids and smart grids
In a recent New Scientist article, ‘The rise of supergrids’, I learned that Australia is among 80 countries backing a project, or perhaps an idea for a project, launched at COP26 in Glasgow, called One Sun One World One Grid, ‘a plan to massively expand the reach of solar power by joining up the electricity grids of countries and even entire continents’. My first reaction was cynicism – Australia’s successive governments have never managed to come up with a credible policy to combat global warming or to develop renewable energy, but they love to save face by cheering on other countries’ initiatives, at no cost to themselves.
Our state government (South Australia) did invest in the construction of a giant lithium ion battery, the biggest of its kind at the time (2017), built by Tesla to firm up our sometimes dodgy electricity supply, and, to be fair, there’s been a lot of state investment here in wind and solar, but there’s been very little at the national level.
At the global level, the Chinese thugocracy has been talking up the idea of a ‘global energy internet’ for some years – but let’s face it, the WEIRD world has good reason not to trust the CCP. Apparently China is a world leader in the manufacture and development of UHVDC (ultra-high voltage direct current) transmission lines, and is no doubt hoping to spread the algorithms of Chinese technological and political superiority through a globe-wrapped electrical belt-and-road.
But back in the WEIRD world, it’s the EU that’s looking to spearhead the supergrid system. It already has the most developed international system for trading electricity, according to the Financial Review. And of course, we’re talking about renewable energy here, though an important ancillary effect would be trade connections within an increasingly global energy system. There’s also an interest, at least among some, in creating a transcontinental supergrid in the US.
Renewable sources such as solar and wind tend to be generated in isolated, low-demand locations, so long-distance transmission is a major problem, especially when carried out across national boundaries. Currently the growth has been in local microgrids and battery storage, but there are arguments about meshing the small-scale with the large scale. One positive feature of a global energy network is that it might just have a uniting effect, regardless of economic considerations.
But of course economics will be a major factor in enticing investment. Economists use an acronym, LCOE, the levelized cost of electricity, when analysing costs and benefits of an electrical grid system. This is a measure of the lifetime cost of a system divided by the energy it produces. The Lappeenranta University of Technology in Finland used this and other measures to analyse the ‘techno-economic benefits of a globally interconnected world’, and found that they would be fewer than those of a national and subnational grid system, which seems counter-intuitive to me. However the analysts did admit that a more holistic approach to the supergrid concept might be in order. In short, more research is needed.
Another concept to consider is the smart grid, which generally starts small and local but can be built up over time and space. These grids are largely computerised, of course, which raises security concerns, but it would be hard to over-estimate the transformative nature of such energy systems.
Our current grid system was pretty well finalised in the mid-twentieth century. It was of course based on fossil fuels – coal, gas and oil – with some hydro. The first nuclear power plant – small in scale – commenced operations in the Soviet Union in 1954. With massive population growth and massive increases in energy demand (as well as a demand for reliability of services) more and more power plants were built, mostly based on fossil fuels. Over time, it was realised that there were particular periods of high and low demand, which led to using ‘peaking power generators’ that were often switched off. The cost of maintaining these generators was passed on to consumers in the form of increased tariffs. The use of ‘smart technology’ by individuals and companies to control usage was a more or less inevitable response.
Moving into the 21st century, smart technology has led to something of a battle and an accommodation with energy providers. Moreover, combined with a growing concern about the fossil fuel industry and its contribution to global warming, and the rapid development of variable solar and wind power generation, some consumers have become increasingly interested in alternatives to ‘traditional’ grid systems, and large power stations, which can, in some regions, be rendered unnecessary for those with photovoltaics and battery storage. The potential for a more decentralised system of mini-grids for individual homes and neighbourhoods has become increasingly clear.
Wikipedia’s article on smart grids, which I’m relying on, is impressively fulsome. It provides, inter alia, this definition of a smart grid from the European Union:
“A Smart Grid is an electricity network that can cost efficiently integrate the behaviour and actions of all users connected to it – generators, consumers and those that do both – in order to ensure economically efficient, sustainable power system with low losses and high levels of quality and security of supply and safety. A smart grid employs innovative products and services together with intelligent monitoring, control, communication, and self-healing technologies in order to:
- Better facilitate the connection and operation of generators of all sizes and technologies.
- Allow consumers to play a part in optimising the operation of the system.
- Provide consumers with greater information and options for how they use their supply.
- Significantly reduce the environmental impact of the whole electricity supply system.
- Maintain or even improve the existing high levels of system reliability, quality and security of supply.
- Maintain and improve the existing services efficiently.”
So, with the continued growth of innovative renewable energy technologies, for domestic and industrial use, and in particular with respect to transport (the development of vehicle-to-grid [V2G] systems), we’re going to have, I suspect, something of a technocratic divide between early adopters and those who are not so much traditionalists as confused about or overwhelmed by the pace of developments – remembering that most WEIRD countries have an increasingly ageing population.
I’m speaking for myself here. Being not only somewhat long in the tooth but also dirt poor, I’m simply a bystander with respect to this stuff, but I hope to to get more integrated, smart and energetic about it over time.
References
Global supergrid vs. regional supergrids
Electric aircraft? It’s happening, in a small way

I no longer write on my solutionsok blog, as it’s just easier for a lazy person like me to maintain the one site, but as a result I’ve not been writing so much about solutions per se, so I’ll try to a bit more of that. The always entertaining and informative Fully Charged show on YouTube provides plenty of material about new developments in renewable energy, especially re transport, and in a recent episode, host Robert Llewelyn had a bit to say about electric planes, which I’d like to follow up on.
Everyone knows that plane travel has been on the up and up haha for decades, and you may have heard that these planes use up a lot of fossil fuel and produce lots of nasty emissions. According to the Australian government’s Department of Infrastructure and Many Other Things (DIMOT – don’t look it up) Australia’a civil aviation sector contributed 22 million tonnes of CO2-equivalent emissions in 2016. That’s of course a meaningless number but safe to say it’s dwarfed by the emissions of the major aviation countries. I assume the term ‘C02-equivalent’ means other greenhouse gases converted into equivalent-impacting amounts of CO2. For aircraft this includes water vapour, hydrocarbons, carbon monoxide, nitrogen oxides, lead and other atmosphere-affecting nasties. More innovative and less polluting engine designs have failed to halt the steady rise of emissions due to increased air travel worldwide, and there’s no end in sight. It’s really the only emissions sector for which there is no obvious solution – unlike other sectors which are largely blocked by vested interests.
So, while few people at present see electric aircraft as the big fix, enterprising engineers are making steady improvements and trying for major breakthroughs with an eye to the hopefully not-too-distant future. Just a couple of days ago, as reported on the nicely-named Good News Network, the largest-ever hybrid-electric aircraft (it looks rather small), the Ampaire 337, took flight from Camarillo airport in California (of course). The normally twin-engine plane was retrofitted with an electric motor working in concert with the remaining fuel engine to create a ‘parallel hybrid’, which significantly reduces emissions. After this successful test run, there will be multiple weekly flights over the next few months, and then, if all goes well, commercial short-haul flights are planned for Hawaii.
Of course, here in Australia, where electric cars are seen by power-brokers as some kind of futuristic horror set to destroy our way of life, there’s no obvious appetite for even wierder flying things, but our time will come – or perhaps we should all give up and invade western Europe or California. Meanwhile, Fully Charged are saying ‘there’s no shortage of aircraft companies around the world [including Rolls Royce] developing electric aircraft’, as well as converting light aircraft to electric (the Ampaire 337 mentioned above is actually a converted Cessna 337). A Canadian airline, Harbour Air, is converting 3 dozen seaplanes to electric motors, with first passengers flights expected by late 2021. These will only be capable of short flights in the region of British Columbia – range, which is connected to battery weight, being perhaps the biggest problem for electric aircraft to overcome. Again according to Fully Charged, there are over 100 electric aircraft development programs going on worldwide at present, and we should see some results in terms of short-haul flights in five years. Perfect for Europe, but also not out of the question for Adelaide to Melbourne or Port Lincoln, Canberra to Sydney and so on. Norway has a plan to use electric aircraft for all its domestic passenger flights in the not-too-distant future.
A name dropped on Fully Charged, Roei Ganzarski, seems worth following up. He says ‘By 2025, 1000 miles in an electric plane is going to be easily done. I’m not saying 5000 miles, but 1000 miles, easily.’ Ganzarski is currently the CEO of magniX, an ‘electric propulsion technology company’, based in Seattle. His company made the motors for the Ampaire 337, I think.
It should be pointed out that UAVs (unmanned – or unpersonned? – aerial vehicles), aka drones, are small electric aircraft, so the principle of electric flight is well established. It’s also worth noting that electricity doesn’t have to come from batteries, though they’re the most likely way forward. Solar cells, for example, can directly convert sunlight into electricity, and in 2015/16, using two alternating pilots, Solar Impulse 2 became the first fixed-wing, piloted, solar-powered aircraft to circumnavigate the globe. Fuel cells, particularly using hydrogen, are another option.
At the moment, though, hybrid power is all the go, and the focus is on light aircraft and short-haul flight. General aviation is still a long way off because, according to this Wikipedia article, ‘the specific energy of electricity storage is still 2% of aviation fuel’. As to what that means, I have very little idea, but this steal from a Vox piece on the topic helps to clarify:
The key limitation for aircraft is the energy density of its fuel: When space and weight are at a premium, you want to cram as much energy into as small a space as possible. Right now, some of the best lithium-ion batteries have a specific energy of 250 watt-hours per kilogram, which has already proved viable in cars. But to compete on air routes up to 600 nautical miles in a Boeing 737- or Airbus A320-size airliner, Schäfer estimated that a battery would need to have a specific energy of 800 watt-hours per kilogram. Jet fuel, by comparison, has a specific energy of 11,890 watt-hours per kilogram.
So, specific energy is essentially related to energy density, and I know that getting batteries to be as energy-dense as possible is the holy grail of researchers. So, until that ten-fold or 100-fold improvement in energy density is achieved by the battery of batteriologists beavering away at the big plane problem, we should at least push for light aircraft and short-haul flights to go completely electric asap. Ausgov, do us proud.
all renewable energy by 2050? Hang on a tick

Sir David McKay, who died in 2016 of stomach cancer, aged 49. A great loss.
The late Sir David McKay, physicist, engineer, sustainable energy expert, Cambridge professor and Royal Society Fellow, has just become known to me through his 2012 TED talk and a lengthier exposition of the same ideas presented at Harvard. These talks were designed, to ‘cut through some of the greenwash’ and provide a realistic account of what can be done, on both the supply and the demand side, to reduce fossil fuel consumption and transform our energy economy.
As I need to keep saying, I’m far from an expert on this stuff, and I’m always impressed by the ingenious developments in the field and the promise of new technology, in batteries and other storage systems – like the compressed air underwater energy storage system being trialled in Lake Ontario, Toronto. But McKay’s contributions are helping me to think more realistically about the enormity of the problem of weaning ourselves from fossil fuels as well as to think more practically about my own domestic usage and the demand side more generally.
While McKay was no renewable energy sceptic or climate change denier, his ‘arithmetical’ view of the future poured a lot of cold hydro on the rosy idea that we’d be living in an all-renewables-powered biosphere within x decades. So I want to take a closer look at some aspects of what he was saying (he also wrote a highly-regarded book, Sustainable energy – without the hot air, available free online).
I particularly want to look at two forms of renewable energy that he talked about; wind and solar. He also talked at some length about two other energy sources, biofuels and nuclear, but I’ve never been much keen on biofuels, which in any case seem to have been largely taken off the menu in recent years, and nuclear, as McKay admits, has a popularity problem – a massive one here in Australia, unfortunately. What I say here about wind and solar will be gleaned largely fromMackay’s Harvard talk, but I’ve downloaded and plan to read his book in the near future.
Mackay has calculated that the current energy production of wind turbines in windy Britain is about 2.5 watts per square metre, and by multiplying per capita energy consumption by population density, you get power consumed per unit area, which for Britain is about 1.25 watts per square metre. This suggests that to cover the consumption of Britain solely by wind, you’d need an area, on land or sea, half the area of Britain. This is clearly not feasible, though of course nobody in Britain, I hope, was ever expecting to have all their energy needs provided by wind. The situation is vastly different for South Australia, two thirds of which is currently powered by wind. SA has vastly more land than Britain and vastly less people.
Though I’m sure it’s possible to quibble with Mckay’s figures and calculations, what he brings to the issues, I think, is a global, as well as a particular perspective that can be lost when you focus, as I have, on local success. For example, South Australia has been very successful in its deployment of wind power over a short period of time, and it’s easy to get carried away and think, if we can do it, why not state x or country y? But SA is a state with a small population and a very large area, and plenty of wind to capture. This just can’t be replicated in, say, Massachussetts, with more than three times the population, a thirtieth of the area, and little wind.
So McKay wasn’t offering global solutions, nor was he dismissing local ones. He was simply pointing out the complexity of the problem in physical and arithmetical terms of weaning ourselves from fossil fuels, as well as getting us thinking about our personal responsibilities on the demand side. Solar isn’t much of a national solution in Britain, though it could be in Australia, which could be a net exporter of renewables, as Elon Musk has suggested, but to which countries, and how exactly do you export solar energy? You’d need conversion and transmission and bilateral agreements. All of this while fighting entrenched interests and upsetting long-standing arrangements. Having said this, more people are hopping on the renewables bus and it’s almost becoming unfashionable, in most western countries outside of Australia, to be dismissive of them, a noticeable change in the last decade.
So what’s the point of this post? It’s to heed McKay’s advice that we need to recognise the complexity of the problem, to keep all possible reasonable solutions on the table, to become more aware, as individuals, communities and states, of our energy consumption, and to recognise that there’s never going to be a one-type-fits-all fix. Environments and needs vary widely, so we need to find particular solutions and we also need to find ways of joining and mixing those solutions together in effective networks. It all sounds pretty daunting, but the fact is, we’re already moving in the right direction, and there’s much to be positive about. Technology and engineering are international, and those in the business are hunting out solutions across the globe and thinking of harnessing and adapting them to their own region, in the process building communication, sharing information and expertise and raising consciousness about energy supply and consumption. And another positive is the endless innovation that comes with thinking about energy solutions in new ways, like small, cheap solar panels to provide energy in developing regions, backyard or small-scale wind-turbines in suitable locations, processing waste to fuel, new developments in batteries and EVs, and so on. So, while there aren’t major, mind-blowing solutions to our fossil-fuel dependence in the offing, we are making progress, incrementally, and the effects of climate change, as they become more impactful, will no doubt accelerate our progress and innovation. We have no option but to think and act positively.

portable solar panels can be surprisingly useful, and cheap
In a future post I’ll look at the demand side, following McKay and many others. Having just moved house, and sadly leaving solar panels behind, it’s time to find out where my meter is, and check our consumption.
On Trump’s downfall: Fire and Fury, the overly-discussed tell-all book about Trump and the White House, is unlikely to affect Trump’s base though it will hopefully toughen the opposition. Trump’s rating remains below 40% and nothing much has happened so far this year. There’s talk of Oprah Winfrey standing for the Presidency in 2020 – please no! – but Trump will be in jail by then and Americans will have lost their appetite for ‘celebrity’ candidates. I’m looking out for Elizabeth Warren.