an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Archive for the ‘technology’ Category

electric vehicles in Australia – how bad/good is it?

leave a comment »

Hyundai Ionique electric – top marks from the Green Vehicle Guide

 

Following on from the interview with Prof Mark Howden that I reported on recently, I’m wondering what the situation is for anyone wanting to buy an EV in Australia today. What’s on the market, what are the prices, how is the infrastructure, and what if, like me, you might want just to hire an EV occasionally rather than own one?

Inspired by Britain’s Fully Charged show, especially the new episodes entitled Maddie Goes Electric, I’m going to do a little research on what I fully expect to be the bleak scenario of EV availability and cost in Australia. Clearly, we’re well behind the UK in terms of the advance towards EV. One of Maddie’s first steps, for example, in researching EVs was to go to a place called the Electric Vehicle Experience Centre (EVEC), for a first dip into this new world. I cheekily did a net search for Australia’s EVEC, but I didn’t come up completely empty, in that we do have an Australian Electric Vehicle Association (AEVA) and an Electric Vehicle Council (EVC), which I’ll have to investigate further. Maddie also looked up UK’s Green Car Guide, and I’ve just learned that Australia has a corresponding Green Vehicle Guide. I need to excuse my ignorance up to this point – I don’t even own a car, and haven’t for years, and I’m not in the market for one, being chronically poor, and not having space for one where I live, not even in terms of off-street parking, but I occasionally hire a car for holidays and would love to be able to do so with an EV. We shall see.

So the Green Vehicle Guide ranks the recently-released all-electric Hyundai Ioniq as the best-performing green vehicle on the Australian market (that’s performance, not sales, where it seems to be nowhere, probably because it’s so new). It’s priced at somewhere between about $35,000 and $50,000. Here’s what a car sales site has to say:

The arrival of the Hyundai IONIQ five-door hatchback signals Australia is finally setting out on its evolution to an electrified automotive society. The IONIQ is the cheapest battery-electric vehicle on sale in Australia and that’s important in itself. But it’s also significant that Australia’s third biggest vehicle retailer has committed to this course when most majors aren’t even close to signing off such a vehicle. In fact, just to underline Hyundai’s push into green motoring, the IONIQ isn’t just a car; it’s a whole range with three drivetrains – hybrid, plug-in and EV.

I need to find out the precise difference between a hybrid and a plug-in… It’s steep learning curve time.

Anyway, some reporting suggests that Australia’s bleak EV situation is turning around. This Guardian article from August 2019 predicts that EV sales are set to rise significantly, regardless of government inaction:

Modelling suggests the electric vehicle share of new car sales in Australia will rise from about 0.34% today to 8% in 2025. It is predicted to then leap to 27% of new car sales in 2030 and 50% in 2035 as prices of electric car technology fall.

2025 isn’t far off, so I’m a bit skeptical of these figures. Nevertheless, I’ll be monitoring the Australian EV scene more closely from now on.

References

https://www.iea.org/policies/7885-a-national-strategy-for-electric-vehicles

https://www.theguardian.com/environment/2019/aug/14/half-of-all-new-cars-sold-in-australia-by-2035-will-be-electric-forecast

https://www.greenvehicleguide.gov.au/

Maddie Goes Electric, Episode 1: Choosing your electric car (A beginner’s guide) | Fully Charged

Written by stewart henderson

January 19, 2020 at 5:14 pm

notes on the electrification of air travel

leave a comment »

stolen from NASA – hope I didn’t let the batt out of the bag

Air travel has become noticeably more popular over the past few decades – due largely to affordability. Even I can afford to catch a plane occasionally these days. And yet …

I realised something was out of kilter when I discovered that, in Europe, you can fly relatively cheaply from one major city to another by plane, whereas travelling by train costs more (sometimes much more) while being more efficient in terms of carbon emissions. So why is that, and what can be done about it?

Planes are generally more costly to run and, especially, to maintain than trains, and labour costs, too, are higher. Yet some of the larger airline companies are prepared to lose money on high-demand short-haul flights to maintain their profile, knowing they can gain on international flights. They can also be (or are) more flexible with their pricing, as this article points out, so that they can get bums on seats at suddenly slashed rates, filling their aircraft for each flight, unlike trains, which have basically operated under the same half-arsed system for over a century.

So, with the steady increase in domestic and international flights, and the lack of government oversight – e.g. taxation – of international airlines that transcend political borders, the carbon footprint of air flight (if that makes sense) is growing. A 2018 report on CO2 emissions stated that ‘using aviation industry values’ there was a 32% increase in aviation emissions in the previous five years. Which of course raises the question – how do we solve the problem of over-use of costly, environmentally-unfriendly jet fuel? The answer, of course, is electric propulsion. No? An electric motor is far simpler and easier to maintain than a jet engine (a turboprop engine has between 7000 and 10,000 moving parts). Energy costs are also cheaper, once a few problems are worked out – ahem.

The biggest problem, of course, is the battery. I’ve heard that AA batteries mightn’t be enough. Nor are the current generation of lithium-ion batteries, though innovation and research in this area is being driven by electric cars hoho. Clearly electric aircraft have to start small and short-haul, and they’re already doing so. I’ve written about this before, but it’s time for an update. Some of the companies involved include Pipistrel, Harbour Air and Eviation, but this is still extremely small-scale stuff as everybody waits for the battery boffins to perform the next miracle. Meanwhile, as with the motor vehicle industry, hybrids have been developed as a kind of stop-gap for larger capacity flights. Another company, Ampaire, has developed small hybrid aircraft with which it hopes to start daily operations in Hawaii in the near future. It’s also working in Norway, where they’re hoping to have all flights of 90 minutes or less to be be either fully electric or hybrid by 2040. I’m glad to hear that my birth country, Scotland is also investing in electric and hybrid planes for similar purposes. If these planes could be shown to be economically viable, then larger aeroplane companies will surely invest in them, as they tend to lose money on regional routes (small turbine engines being very inefficient). This could be the real game-changer, providing reason to invest in battery and other technology for longer electric flight. Changes in technology, combining standard aircraft design with helicopter design, are likely to make air flight more personalised in future, with less need to depend on airports. Of course this will come with regulatory and other issues, but it all makes for a more interesting future in the sky….

References

https://www.independent.co.uk/travel/news-and-advice/cheap-flights-ryanair-train-tickets-rail-price-fares-budget-plane-a8969291.html

Why don’t we have electric planes yet? CNBC video

Written by stewart henderson

December 29, 2019 at 4:14 pm

technomagic – the tellingbone

leave a comment »

weirdly wired – the first telephone

The telephone remains the acme of electrical marvels. No other thing does so much with so little energy. No other thing is more enswathed in the unknown.

Herbert Casson ‘The history of the telephone”, 1910. Quoted in “The Information”, J Gleick

I recently had a conversation with someone of my generation about the technology of our childhoods, and how magical they seemed to us. So let me start with the motor car, or auto-mobile. Our first family car was a Hillman Minx, which was bought in maybe 1964 or so, not too long after we arrived in Australia. The model probably dated from the early or mid-fifties – we certainly weren’t wealthy enough to buy a brand new car. But that didn’t make it any less magical. How was it that you could turn a key and bring an engine to life, and with a bit of footwork and handiwork get the beast to move backward and forward and get its engine to putter or roar? I hadn’t the foggiest.

Next in the mid-sixties came the television box, fired by electrickery. Somehow, due to wires and signals, we could see a more or less fuzzy image of grey figures from faraway, giving us news of Britain and the World Cup, and shows from the USA like Hopalong Cassidy and the Cisco Kid, all made from faraway – even one day from the moon – for our entertainment and enlightenment. Wires and signals, I mean, WTF?

Next we became the first people in the street to have our own tellingbone (or that’s what we proudly told ourselves, actually we had no idea). So people would ring us from the other side of town and then talk to us as if they were standing right next to us!! It was crazy-making, yet people seemed generally to remain as sane as they had been. I would lie in bed trying to work it out. So someone would dial a number, and more or less instantaneously a ringing sound would come out of the phone miles and miles away, and a person there would pick up this bone-shaped piece of plastic with holes in it, and they would talk into one end and listen through the other end, and they could hear this person on the ‘end of the line’ miles away far better than they could hear someone else talking in the next room, all thanks, we were informed, to those wires and signals again.

So, forward to adulthood. One of the most informative books I’ve read in recent years is titled, appropriately enough, The Information, by James Gleick. It’s a history of information processing and communication from tribal drumming to the latest algorithms, and inter alia it tells the story of how the telephone became one of the most rapidly universalised forms of information transfer in human history in the period 1870-1900, approximately. And of course it didn’t come into existence out of nowhere. It replaced the telegraph, the first electrical telecommunications system, itself only a few decades old. Previous to this there were many experiments and developments in the field by the likes of Alessandro Volta, Johann Schweigger and Pavel Schilling. Studying electricity and its potential was the hottest of scientific activities throughout the 19th century, especially the first half.

The telegraph, though, was a transmission-reception system run by experts, making it very unlike the telephone. Gleick puts it thus:

The telegraph demanded literacy; the telephone embraced orality. A message sent by telegraph had first to be written, encoded and tapped out by a trained intermediary. To employ the telephone, one just talked. A child could use it.

Nevertheless the system of poles and wires, the harnessing of electricity, and the concepts of signal and noise (both abstract and exasperatingly practical) had all been dealt with to varying degrees of success well before the telephone came along.

So now let’s get into the basic mechanics. When we talk into a phone we produce patterned sound waves, a form of mechanical energy. Behind the phone’s mouthpiece is a diaphragm of thin metal. It vibrates at various speeds according to the patterned waves striking it. The diaphragm is attached to a microphone, which in the early phones consisted simply of carbon grains in a container attached to an electric current, which were compressed to varying degrees in response to the waves vibrating the diaphragm, modulating the current. That current flows through copper wires to a box outside your home which connects with other wires and cables in a huge telecommunications system.

Of course the miracle to us, or to me, is how a sound wave signal, moving presumably more or less at the speed of sound, and distinctive for every human (not to mention dogs, birds etc), can be converted to an electrical signal, moving presumably at some substantial fraction of the speed of light, then at the end of its journey be converted back to a mechanical signal with such perfect fidelity that you can hear the unmistakeable tones of your grandmother at the other end of the line in real time. The use of terms such as analogue and digitising don’t quite work for me, especially when combined with the word ‘simply’, which is often used. In any case, the process is commonplace enough, and has been used in radio, in recorded music and so forth.

It all bears some relation to the work of the greatest physical theorist of the 19th century, James Clerk Maxwell, who recognised and provided precise relationships between electrical impulses, magnetism and light, bringing the new and future technologies together, to be amplitude-modified by engineers who needed to understand the technicalities of input, output, feedback, multiplexing, and signal preservation. But as the possibilities of the new technology expanded, so did technological expertise, and switchboards and networks became increasingly complex. They eventually required a numbering system to keep track of users and connections, and telephone directories were born, only to grow in size and number, costing acres of forestry, until in the 21st century they didn’t. I won’t go into the development of mobile and smartphones here, those little black boxes of mystery which I might one day try to peer inside, but I think I’ve had enough armchair demystifying of the technomagical for one day.

Yet something I didn’t think of as a child was that the telephone was no more technomagical than just speaking and listening to the person beside you. To speak, to make words and sentences out of sounds, first requires a sound-maker (a voice-box, to employ a criminally simplistic term), then a complex set of sound-shapers (the tongue, the soft and hard palates, the teeth and lips) into those words and sentences. Once they leave the speaker’s lips they make waves in the air – complex and variable waves which carry to the hearer’s tympanum, stimulating nerves to send electrical impulses to the auditory cortex. This thinking to speaking to listening to comprehending process is so mundane to us as to breed indifference, but no AI process comes close to matching it.

References

The information, James Gleick, 2011

https://electronics.howstuffworks.com/telephone1.htm

https://www.antiquetelephonehistory.com/telworks.php

https://www.thoughtco.com/how-a-telephone-works-1992551

Written by stewart henderson

March 1, 2019 at 4:31 pm

reflections on base load, dispatchable energy and SA’s current situation

leave a comment »

just to restate the point that SA’s power outages are due to transmission/distribution lines being damaged, nothing to do with renewable energy

Canto: So now we’re going to explore base load. What I think it means is reliable, always available energy, usually from fossil fuel generators (coal oil gas), always on tap, to underpin all this soi-disant experimental energy from solar (but what about cloudy days, not to mention darkness, which is absence of light, which is waves of energy isn’t it?) and wind (which is obviously variable, from calm days to days so stormy that they might uproot wind turbines and send them flying into space, chopping up birds in the process).

Jacinta: Well we can’t think about base load without thinking about grids. Our favourite Wikipedia describes it as ‘the minimal level of demand on an electrical grid over a span of time’. So the idea is that you always need to cover that base, or you’ll be in trouble. And an electrical grid is a provision of electrical service to a particular community, be it a suburb, a city or a state. 

Canto: Right, I think, and what I like about Wikipedia is the way it sticks it to the back-facing thinkers, for whom base load always means provision from traditional providers (coal oil gas). 

Jacinta: Yes, let’s rub it in by quoting Wikipedia on this. 

When the cheapest power was from large coal and nuclear plants which could not be turned up or down quickly, they were used to generate baseload, since it is constant, and they were called “baseload plants.” Large standby reserves were needed in case of sudden failure of one of these large plants. Unvarying power plants are no longer always the cheapest way to meet baseload. The grid now includes many wind turbines which have such low marginal costs that they can bid lower prices than coal or nuclear, so they can provide some of the baseload when the wind blows. Using wind turbines in areas with varying wind conditions, and supplementing them with solar in the day time, dispatchable generation and storage, handles the intermittency of individual wind sources.

Canto: So the times are a-changing with respect to costs and supply, especially as costs to the environment of fossil fuel supplies are at last being factored in, at least in some parts of the world. But let’s keep trying to clarify terms. What about dispatchable generation, and how does it relate to base load?

Jacinta: Well, intermittent power sources, such as wind and solar, are not dispatchable – unless there’s a way to store that energy. Some renewable energy sources, such as geothermal and biomass, are dispatchable, but they don’t figure too much in the mix at present. The key is in the word – these sources are able to be dispatched on demand, and have adjustable output which can be regulated in one way or another. But some sources are easier, and cheaper, to switch on and off than others. It’s much about timing; older generation coal-fired plants can take many hours to ‘fire up’, so their dispatchability, especially in times of crisis, is questionable. Hydroelectric and gas plants can respond much more quickly, and batteries, as we’ve seen, can respond in microseconds in times of crisis, providing a short-term fix until other sources come on stream. Of course, this takes us into the field of storage, which is a whole other can of – what’s the opposite of worms?

Canto: So this question of base load, this covering of ‘minimal’ but presumably essential level of demand, can be a problem for a national grid, but you can break that grid up presumably, going ‘off grid’, which I’m guessing means going off the national grid and either being totally independent as a household or creating a micro-grid consisting of some small community…

Jacinta: Yes and this would be the kind of ‘disruptive economy’ that causes nightmares for some governments, especially conservative ones, not to mention energy providers and retailers. But leaving aside micro-grids for now, this issue of dispatchability can be dealt with in a flexible way without relying on fossil fuels. Energy storage has proven value, perhaps especially with smaller grids or micro-grids, for example in maintaining flow for a particular enterprise. On the larger scale, I suppose the Snowy 2 hydro project will be a big boon? 

Canto: 2000 megawatts of energy generation and 175 hours of storage says the online ‘brochure’. But the Renew Economy folks, who always talk about ‘so-called’ base load, are skeptical. They point to the enormous cost of the project, which could escalate, due, among other things, to the difficulties of tunnelling through rock of uncertain quality. They feel that government reports have over-hyped the project and significantly downplayed the value of alternatives, such as battery electric storage systems, which are modular and flexible rather than this massive one-off project which may be rendered irrelevant once completed. 

Jacinta: So let’s relate this to the South Australian situation. We’re part of the national grid, or the National Energy Market (NEM), which covers SA and the eastern states. This includes generators, transformers (converting low voltage to high voltage for transport, and then converting back to low voltage for distribution), long distance transmission lines and shorter distance distribution lines. So that’s wholesale stuff, and it’s a market because different companies are involved in producing and maintaining the system – the grid, if you like.

Canto: I’ve heard it’s the world’s largest grid, in terms of area covered.

Jacinta: I don’t think so, but it depends on what metric you use. Anyway, it’s pretty big. South Australia has been criticised by the federal government for somehow harming the market with its renewables push. Also, it was claimed at least a year ago that SA had the highest electricity prices in the world. This may have been an exaggeration, but why are costs so high here? There are green levies on our bill, but I think they’re optional. Also, the electricity system was privatised in the late 90s, so the government has lost control of pricing. High-voltage transmission lines are owned by ElectraNet, part-owned by the Chinese government. The lower voltage distribution lines are operated by SA Power Networks, majority-owned by a Hong Kong company, and then there are the various private retailers. It’s hard to work out, amongst all this, why prices are so high here, but the closure of the Northern coal-fired power station in Port Augusta, which was relatively low cost and stable, meant a greater reliance on more expensive gas. Wind and solar have greater penetration into the SA network than elsewhere, but there’s still the intermittency problem. Various projects currently in the pipeline will hopefully provide more stability in the future, including a somewhat controversial interconnector between SA and NSW. Then there’s the retail side of things. Some retailers are also wholesalers. For instance AGL supplies 48% of the state’s retail customers and controls 42% of generation capacity. All in all, there’s a lack of competition, with only three companies competing for the retail market, which is a problem for pricing. At the same time, if competitors can be lured into the market, rather than being discouraged by monopoly behaviour, the high current prices should act as an incentive. 

Canto: Are you suggesting that retailers are profiteering from our high prices?

Jacinta: I don’t know about that, but before the Tesla battery came online the major gas generators – who are also retailers – were using their monopoly power to engage in price gouging at times of scarcity, to a degree that was truly incredible – more so in that it was entirely legal according to the ACCC and other market regulators. The whole sorry story is told here . So I’m hoping that’s now behind us, though I’m sure the executives of these companies will have earned fat bonuses for exploiting the situation while they could. 

Canto: So prices to consumers in SA have peaked and are now going down?

Jacinta: Well the National Energy Market has suffered increased costs for the past couple of years, mainly due to the increased wholesale price of gas, on which SA is heavily reliant. It’s hard to get reliable current data on this online, but as of April this year the east coast gas prices were on their way down, but these prices fluctuate for all sorts of reasons. Of course the gas lobby contends that increased supply – more gas exploration etc – will solve the problem, while others want to go in the opposite direction and cut gas out of the South Australian market as much as possible. That’s unlikely to happen though, in the foreseeable, so we’re likely to be hostage to fluctuating gas prices, and a fair degree of monopoly pricing, for some time to come. 


Written by stewart henderson

November 26, 2018 at 11:37 am

an assortment of new technology palaver

leave a comment »

I like the inset pic – very useful for the Chinese

Western Australia lithium mining boom

I’m hearing, better late than never, that lithium carbonate from Western Australia is in big demand. The state already provides most of the world’s lithium for all those batteries used to run smart devices, electric vehicles, and large-scale storage batteries such as South Australia’s Tesla-Neoen thingy at Jamestown (now 80% complete, apparently). Emissions legislation around the world will only add to the demand, with the French and British governments planning to ban the sale of petrol and diesel vehicles by 2040, following similar plans by India and Norway, and the major investments in EVs in China. Australia’s government, of course, is at the other end of the spectrum re EVs, but I’ve no doubt we’ll get there eventually (we’ll have to!). Tesla, Volvo, Nissan, Renault, Volkswagen and Mercedes are all pushing more EVs into the marketplace. So now’s the time, according to Money Boffins Inc, to buy shares in lithium and other battery minerals (I’ve never bought a share in my life). This lithium mining boom has been quite sudden and surprising to many pundits. In January of this year, only one WA mine was producing lithium, but by mid-2018 there will be eight, according to this article. The battery explosion, so to speak, is bringing increased demand for other minerals too, including cobalt, nickel, vanadium and graphite. Australia’s well-positioned to take advantage. Having said that, the amount of lithium we’re talking about is a tiny fraction of what WA exports in iron ore annually, but it’s already proving to be a big boost to the WA economy, and a big provider of jobs.

battery recycling

Of course all of this also poses a problem, as mentioned in my last post, and it’s a problem that the renewable energy sector should be at least ideologically driven to deal with: waste and recycling. Considering the increasing importance of battery technology in our world, and considering the many toxic components of modern batteries, such as nickel, lead acid, cadmium and mercury, it’s yet another disappointment that there’s no national recycling scheme for non-rechargeable batteries. Currently only lead acid batteries can be recycled, and the rest usually end up in landfill or are sent to be recycled overseas. So it’s been left to the industry to develop an Australian Battery Recycling Initiative (ABRI), which has an interesting website where you can learn about global recycling and many other things batterial – including, of course, how to recycle your batteries. Also, an organisation called Clean Up Australia has a useful battery recycling factsheet, which, for my own educational purposes I’m going to recycle here, at least partly. Battery types can be divided into primary, or single-use, and secondary, or rechargeable. The primary batteries generally use zinc and manganese in converting chemical to electrical energy. Rechargeable batteries use a variety of materials, including nickel cadmium, nickel metal hydride and of course lithium ion chemistry. Batteries in general are the most hazardous of waste materials, but there are also environmental impacts from battery production (mining mostly) and distribution (transport and packaging). As mentioned, Australian batteries are sent overseas for recycling – ABRI and other groups are trying to set up local recycling facilities. Currently a whopping 97% of these totally recyclable battery units end up in landfill, and – another depressing factoid – Australia’s e-waste is growing at 3 times the rate of general household waste. So the public is advised to use rechargeable batteries wherever possible, and to take their spent batteries to a proper recycling service (a list is given on the fact sheet). The ABRI website provides a more comprehensive list of drop-of services.

2015 registrations: Australia’s bar would be barely visible on this chart

EVs in Australia – a very long way to go

I recently gave a very brief overview of the depressing electric vehicle situation in Australia. Thinking of buying one? Good luck with that. However, almost all motorists are much richer than I am, so there’s hope for them. They’re Australia’s early adopters of course, so they need all the encouragement we can give them. Journalist Timna Jacks has written an article for the Sydney Morning Herald recently, trying to explain why electric vehicles have hit a dead end in Australia. High import duties, a luxury car tax and a lack of subsidies and infrastructure for electric vehicles aren’t exactly helping the situation. The world’s most popular electric car, the Nissan Leaf, is much more expensive here than in Europe or the US. And so on. So it’s hardly surprising that only 0.1% of all cars sold in Australia in 2015 were electric cars (compared with 23% and rising in EV heaven, aka Norway, 1.4% in France and 0.7% in the US). Of course Australia’s landscape’s more or less the opposite of compact, dense and highly urbanised Europe, and range anxiety might be a perennial excuse here. We have such a long way to go. I expect we’ll have to wait until shame at being the world’s laughing-stock is enough of a motivation.

Adelaide’s Tindo

I’ve been vaguely aware of Adelaide’s ‘green bus’ for some years but, mea culpa, haven’t informed myself in any depth up until now. The bus is called Tindo, which is a Kaurna aboriginal word meaning the sun. Apparently it’s the world’s first and only completely solar powered electric bus, which is quite amazing. The bus has no solar panels itself, but is charged from the solar panels at the Franklin Street bus station in the city centre. It’s been running for over four years now and I’m planning to take a trip on it in the very near future. I was going to say that it’ll be the first time I’ve been on a completely electric vehicle with no internal combustion engine but I was forgetting that I take tram trips almost every day. Silly me. Still, to take a trip on a bus with no noisy engine and no exhaust fumes will be a bit of a thrill for me. Presumably there will be no gear system either, and of course it’ll have regenerative braking – I’m still getting my head around this stuff – so the ride will be much less jerky than usual.

So here are some of the ‘specs’ I’ve learned about Tindo. It has a range of over 200 kilometres (and presumably this is assisted by the fact that its route is fixed and totally urban, so the regen braking system will be charging it up regularly). It uses 11 Swiss-made Zebra battery modules which are based on sodium nickel chloride, a type of molten salt technology. They have higher energy density, they’re lightweight and virtually maintenance free. According to the City of Adelaide website the solar PV system on the roof of the bus station is (or was – the website is annoyingly undated) ‘Adelaide’s largest grid-connected system, generating almost 70,000 kWh of electricity a year’. No connection to the ‘carbon-intensive South Australian electricity grid’ is another plus, though to be fair our grid is far less carbon intensive than Victoria’s which is almost all brown coal. South Australia’s grid runs on around half gas and half renewables, mostly wind. The regen braking, I must remind myself, means that when decelerating the bus uses no energy at all, and the motor electronically converts into an electrical generator, which generates electricity with the continued forward motion of the bus. There are many more specs and other bits of info on this Tindo factsheet.

battery technology and the cobalt problem

leave a comment »

The battery in my iPhone 6+ is described as a lithium polymer, or Li-ion polymer battery. I’m trying to find out if it contains cobalt. Why? Because cobalt is a problem.

According to this Techcrunch article, most of the world’s cobalt is currently sourced from Africa, especially the Congo, one of the world’s poorest countries. Child labour is regularly used in the mines there, under pain of beatings and other forms of coercion. The battery industry uses about 42% of global cobalt production, and the rest is used in a range of essential military-industrial applications.

Incidentally, this article from teardown.com blog goes deep inside the iPhone 6+ battery, showing that it uses lithium cobalt oxide (LiCoO2) for the cathode.

I can think of three possible ways out of this problem. 1. Stop sourcing cobalt from the Congo, or anywhere else that has exploitative labour practices. 2. Reform those labour practices, to improve the lives of the workers and provide them with a fairer share of the tech revolution profits. 3. Find an alternative to cobalt for batteries and other applications.

I didn’t say there were easy solutions haha. Anyway, let’s examine them.

An online Fortune article from March this year, which by the way confirms that cobalt is indeed used in iPhone and iPad batteries, reported that Apple has responded to investigative articles by Washington Post and Sky News by no longer buying cobalt from companies that employ child labour. Of course, even if we take Apple at its word – and considering that the Congo provides 60% of the world’s cobalt, and other African sources may have similar problems, how else will Apple be able to source cobalt cheaply? – the problem of Congolese child labour remains. The Washington Post report focused on a Chinese company, Zhejiang Huayou Cobalt Company, which purchases a large percentage of Congolese cobalt. It seems highly unlikely that such a company will be as affected by public or media pressure as Apple. However, there are some positive signs. A report in the Financial Times from a year ago, entitled ‘China moves to quell child labour claims in Congo cobalt mines’, says that China has launched a ‘Responsible Cobalt Initiative’ to improve supply chain governance and transparency. Whether this means applying solution 1 or solution 2 to the problem is unclear, but presumably it’s solution 2, and it really is a serious initiative, put forward by the Chinese Chamber of Commerce for Metals, Minerals and Chemicals Importers and Exporters, backed by the OECD and involving a number of international tech companies. Of course we’ll have to wait for reports on how this initiative is faring, and on whether these companies are concerned to improve the lives of cobalt miners or simply to ban the under-age ones while still paying very little to the remainder. Continued scrutiny is obviously necessary.

Of course, solution 3 would be of most interest to tech-heads (though presumably the effect on the Congolese economy would be terrible). According to this marketing article, there isn’t too much cobalt available, and the demand for it is increasing sharply. One problem is that cobalt isn’t generally mined on its own as ‘primary cobalt’ but as a byproduct of copper or nickel, and both of these metals are experiencing a worldwide price plunge, with many mines suspending activities. Also the current supply chain for cobalt is being dominated by Chinese companies. This could have a stifling effect especially on the EV revolution. Governments in advanced countries around the world – though not in Australia – are mandating the adoption of electric vehicles and the phasing out of fossil-fuel-based road transport. The batteries for these vehicles all contain cobalt.

In the TechCrunch article mentioned above, journalist Sebastien Gandon examines the Tesla situation. The company has a target of 500,000 vehicles a year by 2018, with cobalt sourced exclusively from North America. On the face of it, this seems unrealistic. Canada and the US together produce about 4% of the world’s cobalt supply, and  acccording to Gandon the maths just doesn’t add up, to say the least. For a start, the mining companies Tesla is looking to rely on are not even operational as yet.

However, there are a few more promising signs. The Tesla model S has been using high energy density nickel-cobalt-aluminium-based (NCA) battery cells, which have a lower cobalt content than the nickel-manganese-cobalt (NMC) batteries of most other companies. There is also the possibility of adopting lithium-iron-phosphate (LFP) chemistry, or lithium-manganese-oxide (LMO), neither of which use cobalt, though their lower energy density is a problem. In any case, battery technology is going through a highly intensive phase at present, as I’ve already reported, and a move away from cobalt has become a distinct possibility. Nickel is currently being looked at, but results so far have been disappointing. There are certainly other options in the offing, and cobalt itself, which unlike oil is completely recyclable, could still be viable with greater focus. It isn’t so much that it is scarce, it’s more that, in the past, it hasn’t been a primary focus, but mining it as a primary source will require substantial upfront costs, and substantial time delays.

So, all in all, it’s a problematic future, at least in the short term, for vehicles and technologies using cobalt-based battery systems. We can only wait and see what comes out of it.

Written by stewart henderson

October 28, 2017 at 12:55 pm

the tides – a massive potential resource?

leave a comment »

A floating tidal turbine, Orkney islands, as seen on Fully Charged

A recent episode of Fully Charged, the Brit video series on the sources and harnessing of clean energy, took us again to the very windy Orkney Isles at the top of Scotland to have a look at some experimental work being done on generating energy from tidal forces. When you think of it, it seems a no-brainer to harness the energy of the tides. They’re regular, predictable, unceasing, and in some places surely very powerful. Yet I’ve never heard of them being used on an industrial scale.

Of course, I’m still new to this business, so the learning curve continues steep. Tide mills have been used historically here and there, possibly even since Roman times, and tidal barrages have been operating since the sixties, the first and for a long time the largest being the La Rance plant, off the coast of Brittany, generating 240 MW. A slightly bigger one has recently been built in Korea (254 MW).

But tidal barrages – not what they’re testing in the Orkneys – come with serious environmental impact issues. They’re about building a barrage across a bay or estuary with a decent tidal flow. The barrage acts as a kind of adjustable dam, with sluice gates that open and close, and additional pumping when necessary. Turbines generate energy from pressure and height differentials, as in a hydro-electric dam. Research on the environmental impact of these constructions, which can often be major civil engineering projects, has revealed mixed results. Short-term impacts are often devastating, but over time one type of diversity has been replaced by another.

Anyway, what’s happening in the Orkneys is something entirely different. The islanders, the Scottish government and the EU are collaborating through an organisation called EMEC, the European Marine Energy Centre, to test tidal power in the region. They appear to be inviting innovators and technicians to test their projects there. A company called ScotRenewables, for example, has developed low-maintenance floating tidal turbines with retractable legs, one of which is currently being tested in the offshore waters. They’re designed to turn with the ebb and flood tides to maximise their power generation. It’s a 2 MW system, which of course could be duplicated many times over in the fashion of wind turbines, to generate hundreds if not thousands of megawatts. The beauty of the system is its reliability – as the tidal flow can be reliably predicted at least eighteen years into the future, according to the ScotRenewables CEO. This should provide a sense of stability and confidence to downstream suppliers. Also, floating turbines could easily be removed if they’re causing damage, or if they require maintenance. Clearly, the effect on the tidal system would be minimal compared to an estuarine barrage, though there are obvious dangers to marine life getting too close to turbines. The testing of these turbines is coming to an end and they’ve been highly successful so far, though they already have an improved turbine design in the wings, which can be maintained either in situ or in dock. The design can also be scaled down, or up, to suit various sites and conditions.

rotors are on retractable legs, to protect from storms, etc

Other quite different turbine types are being tested in the region, with a lot of government and public support, but I got the slight impression that commercial support for this kind of technology is somewhat lacking. In the Fully Charged video on this subject (to which I owe most of this info), Robert Llewelyn asked the EMEC marketing manager whether she thought tidal or wave energy had the greatest future potential (she opted for wave). My ears pricked up, as wave energy is another newie for me. Duh. Another post, I suppose.

As mentioned though in this video, a lot of the developments in this tidal technology have come from shipbuilding technology, from offshore oil and gas technology, and from maritime technology more generally, as well as modern wind turbine technology, further impressing on me that skills are transferable and that the cheap clean energy revolution won’t be the economic/employment disaster that the fossil fuel dinosaurs predict. It’s a great time for innovation, insight and foresight, and I can only hope that more government and business people in Australia, where I seem to be stuck, can get on board.

fixed underwater tidal turbine being tested off the Orkney Islands

Written by stewart henderson

October 11, 2017 at 6:27 am