a bonobo humanity?

‘Rise above yourself and grasp the world’ Archimedes – attribution

Posts Tagged ‘brain

The philosophers want more power

leave a comment »

tamsin shaw

tamsin shaw

Canto: Well I suppose the apparent detection of gravitational waves should be capturing our attention more than anything else right now, but it’s very well described in The Economist, and in many other places, and we’re no astrophysicists, and we did promise to focus a bit more on philosophical issues, so…

Jacinta: But we’re no philosophers. But we’re philosophasters at least, so let’s have a go.

Canto: Well I came across an article on Three Quarks Daily which vaguely gave me the irrits, so with your help I want to explore why.

Jacinta: Right. The essay is called ‘The psychologists take power’, the author is Tamsin Shaw and it was originally published in the New York review of books.

Canto: Yes, and on reading it in full I find it an interesting but confused piece, which seems to take the failings of certain individual psychologists as an example of the failings of psychology as a whole, and even of neurology. Shaw seems to be entering the philosophy versus science debate, on the side of philosophy, but I don’t find her arguments convincing.

Jacinta: The essay seems to divide into two parts, first a general critique of psychology and neurology, which can be summed up by the title of a philosophical essay by Selim Berker, which she quotes approvingly, ‘the normative insignificance of neuroscience’. The second part is an account of how certain professional psychologists, practitioners of the ‘positive psychology’ pioneered by the influential Martin Seligman, colluded with the US government in providing dubious evidence for the psychological effectiveness of torture in eliciting valuable information from ‘enemies of the state’. Shaw clearly wants to link these unethical practices to what she might want to call ‘the normative insignificance of psychology’.

Canto: Yes, and it’s a bit of a dangerous game – you might as well label Heidegger’s allegiance to the Nazi party, or Althusser’s murder of his wife, as examples of ‘the normative insignificance of philosophy’.

Jacinta: Ha, well Althusser was declared insane at the time, no doubt by psychologists, who would be examining Althusser to determine whether he was, while strangling his wife, capable of understanding and following the normative rules of his society. Such determinations are hardly normatively insignificant, even though, no doubt, individual psychologists might make different determinations, due to levels of competence, corruption, ideological considerations and so forth.

Canto: Right, but let’s look more closely at Shaw’s essay, and pick it apart.

Jacinta: Okay, but first let’s make a philosophasters’ confession. Shaw mentions eight or so books or sources at the head of her essay, which form the basis of her discussion, but of those we’ve only read one – Pinker’s eloquent tome, The better angels of our nature. And we don’t intend to bone up on those other texts, though no doubt we’ll refer to our own reading in our responses.

Canto: And we are reasonably familiar with Jonathan Haidt’s work and ideas.

Jacinta: So Shaw begins her essay with the overweening ambition of behaviourist extraordinaire B F Skinner, a pretty soft target these days. I have no problems with criticising him, or Freud or any other psychologist whose theories get way out of hand. Shaw’s concerns, though, are specifically about the moral sphere. She feels that a new breed of psychologists, armed with neurological research, are making big claims about moral expertise. Here’s a quote from her essay:

Neuroscience, it is claimed, has revealed that our brains operate with a dual system for moral decision-making.

Canto: I like the ‘it is claimed’ bit. Claimed by who? Someone has put forward that hypothesis I’m sure, along with their reasons, but most neurologists bang on about neurology being a field in its infancy, and most findings are highly contested, it seems to me.

Jacinta: Shaw may be referring to the work of Daniel Kahneman – a psychologist not a neurologist – who distinguished between system 1 thinking (intuitive, less conscious, rough-and ready) and system 2 thinking (reasoned, conscious, more changeable depending on inputs and knowledge). But really there are many dual-process theories going back at least to William James. But Shaw is explicitly referring to the fMRI imaging work of the neurologist Jonathan Cohen, who analysed brain activity when subjects were asked to think about moral hypotheticals.

Canto: Yes and she’s quite straight about describing the two systems apparently highlighted by Cohen’s research and the brain regions associated with them, but becomes scathing in dealing with Joshua Greene, Cohen’s co-researcher, whom she quite deliberately introduces as a mere ‘philosophy graduate student’, whose interpretation of the research she describes thus:

Greene interpreted these results in the light of an unverifiable and unfalsifiable story about evolutionary psychology. Since primitive human beings encountered up-close dangers or threats of personal violence, their brains, he speculated, evolved fast and focused responses for dealing with such perils. The impersonal violence that threatens humans in more sophisticated societies does not trigger the same kind of affective response, so it allows for slower, more cognitive processes of moral deliberation that weigh the relevant consequences of actions. Greene inferred from this that the slower mechanisms we see in the brain are a later development and are superior because morality is properly concerned with impersonal values—for example, justice—to which personal harms and goals such as family loyalty should be irrelevant. He has taken this to be a vindication of a specific, consequentialist philosophical theory of morality: utilitarianism.

Jacinta: Okay, so here’s where psychology – especially evolutionary psychology – first comes under attack. It’s often said to present just so stories, which are necessarily highly speculative, as if they are facts. But I would question whether these speculations, or hypotheses, are unverifiable (forget about falsifiability, a term made popular by Karl Popper but which has come under heavy criticism since, both by scientists and philosophers of science, and I suspect Shaw has simply used it as a ‘double whammy’ to vilify Greene), to me they’re important and useful, and in any case are rarely presented as facts, at least not by the best psychologists.

Canto: So how do you verify this hypothesis, that fast, rough-and-ready responses for dealing with immediate dangers are systematically different from slower, more sophisticated responses that deal with the ‘impersonal violence’, the many restraints, justified or not, on our personal freedoms that we deal with on a daily basis?

Jacinta: Well one obvious way is through neurology, a scientific field still in its infancy as you say. Clearly the system 1 responses would be shared by other complex social mammals, whereas system 2 thinking is much more language-dependent and unique to humans – unless cetaceans have developed complex language, which is far from being out of the question. New techniques for mapping and exploring neural pathways are coming up all the time, as well as non-invasive ways of exploring such pathways in our closest mammalian relatives.

Canto: Good point. So to go to the second part of the above quote, Greene is presented (and I wonder about whether Shaw is fairly or accurately presenting him) as finding system 2 thinking as superior because it deals with more abstract and less personal values, whereas I would prefer to think of this system as a further adaptation, to a human existence that has become more socially complex, systematic and language-based. And in this, I’m apparently in line with the thinking of psychologists Shaw takes aim at:

Many of the psychologists who have taken up the dual-process model claim to be dismissive of philosophical theories, generally. They reject Greene’s inferences about utilitarianism and claim to be restricting themselves to what can be proved scientifically. But in fact all of those I discuss here are making claims about which kinds of moral judgments are good or bad by assessing which are adaptive or maladaptive in relation to a norm of social cooperation. They are thereby relying on an implicit philosophical theory of morality, albeit a much less exacting one than utilitarianism.

Jacinta: But I detect a problem here. You’ve talked about adaptation to the fact of growing social complexity, and the need to co-operate within that complexity. Shaw has written of a ‘norm of social co-operation’, by which she means an ethical norm, because she claims that this is the implicit philosophical theory of morality these psychologists rely on. But that’s not true, they’re not claiming that there’s anything moral about social complexity or social co-operation. We just are more complex, and necessarily more co-operative than our ancestors. So it’s kind of silly to say they’re relying on a less exacting moral philosophy than utilitarianism. It’s not about moral philosophy at all.

Canto: And it gets worse. Shaw claims that this phantom moral ethic of social co-operation is greatly inferior to utilitarianism, so let’s look at that normative theory, which in my view is not so much exacting as impossible. Utilitarianism is basically about the maximising of utility. Act in such a way that your actions maximise utility (act utilitarianism), or create rules that maximise utility (rule utilitarianism). So what’s utility? Nothing that can be measured objectively, or agreed upon. We can replace it with happiness, or pleasure, or well-being, or Aristotle’s eudaemonia, however translated, and the problem is still the same. How do you measure, on a large-scale, social level, things so elusive, intangible and personal?

Jacinta: Yes, and look at how laws change over time, laws for example relating to homosexuality, women’s rights, the protection of minorities, and even business practices, taxation and the like; they’re all about our changing, socially evolving sense of how to co-operate in such a way as to produce the best social outcomes. This can’t be easily bedded down in some fixed normative ethic.

Canto: Yes, Shaw seems to imply that some deep philosophical insight is missing from these psychologists which makes them liable to go off the rails, as the second half of her essay implies, but I’m very doubtful about that. But let’s continue with our analysis:

Rather than adhering to the moral view that we should maximize “utility”—or satisfaction of wants—they are adopting the more minimal, Hobbesian view that our first priority should be to avoid conflict. This minimalist moral worldview is, again, simply presupposed; it is not defended through argument and cannot be substantiated simply by an appeal to scientific facts. And its implications are not altogether appealing.

Jacinta: But surely she’s just assuming that ‘they’ – presumably all the psychologists she doesn’t like, or is it all the psychologists who posit a two-tiered system of decision-making? – take the view that avoidance of conflict is the highest priority.

Canto: Well I must say that Jonathan Haidt seems to take that view, and it’s something I find uncomfortable. So I agree with Shaw that Haidt ‘presupposes that the norm of cooperation should take precedence over the values that divide us’, and that this view is dubious. It’s just that I suspect my own view, that there are values more important than co-operation, is also a ‘presupposition’, though I dislike that word. But more of that later perhaps.

Jacinta: Right, so Shaw refers to the sinister implications of a minimalist Hobbesian worldview, supposedly held by these psychologists. What are they?

Canto: We’ll get there eventually – perhaps. Shaw describes the work of the ‘positive psychology’ movement, stemming from Martin Seligman and practised by Haidt among others, including Steven Pinker, whose book The better angels of our nature was apparently influenced by this movement:

In that extremely influential work Pinker argues that our rational, deliberative modes of evaluation should take precedence over powerful, affective intuitions. But by “rationality” he means specifically “the interchangeability of perspectives and the opportunity the world provides for positive-sum games,” rather than any higher-order philosophical theory. He allows that empathy has played a part in promoting altruism, that “humanitarian reforms are driven in part by an enhanced sensitivity to the experiences of living things and a genuine desire to relieve their suffering.” But nevertheless our “ultimate goal should be policies and norms that become second nature and render empathy unnecessary.”

And here’s where I see another problem. Pinker is here criticised for not subscribing to any ‘higher-order philosophical theory’, but Shaw doesn’t attempt to outline or give examples of such higher-order theories, though she does refer to empathy – an important factor, but one that doesn’t obviously emerge from philosophy.

Jacinta: Right, and we’ve already referred to utilitarianism and its problems. This reminds me that years ago  I read a sort of primer on ethics, I think it was called Moral Philosophy, in which the author devoted chapters to utilitarianism, Kantianism, rights theory and other ethical approaches. In the final chapter he presented his own preferred approach, a sort of neo-Aristotelianism. I was intrigued that he felt we hadn’t made much progress in philosophical ethics in almost 2,500 years.

Canto: Well, his may be a minority view, but it’s doubtful that our changing laws derive from philosophical work on normative ethics, though this may have had an influence. I do think, with Haidt, that there’s a great deal of post-hoc rationalisation going on, though I’m reluctant – very reluctant actually – to embrace the relativism of values. And this brings me to the nub of the matter, IMHO. To go back to an old favourite of mine, Hume: ‘reason is and ought only to be the slave of the passions’. A fairly notorious pronouncement, but I take the passions here to be something very basic – the fundamental drives and instincts, largely unconscious, that characterise us as humans…

Jacinta: But doesn’t Hume break his own is-ought rule here? He says that our passions rule our reason, which may or may not be true, but does it follow that they ought to?

Canto: Please don’t complicate matters. Hume also wrote this, in An Enquiry Concerning the Principles of Morals:

In all determinations of morality, this circumstance of public utility is ever principally in view, and wherever disputes arise, either in philosophy or common life, concerning the bounds of duty, the question cannot, by any means, be decided with greater certainty, than by ascertaining, on any side, the true interests of mankind.

So these true interests of mankind…

Jacinta: Hang on, so there he goes again, gaily bounding over his own is-ought barrier, saying that in order to work out what we ought to do we need – pretty well absolutely – to determine our interests, what in fact makes us human, what we actually are.

Canto: Well, precisely…

Jacinta: Or what we have evolved to become, which might amount to the same thing. So we need to study our evolution, our genes and genetic inheritance, our brain and its inheritance, and adaptive growth, and maybe the physics of our bodies…

our old Scottish mate Davey Hume, doyen of skeptics, whose is-ought distinction has been widely misinterpreted, we suspect

our old Scottish mate Davey Hume, doyen of skeptics, whose is-ought distinction has been widely misinterpreted, we suspect

Canto: So we need neurology, and genetics, and palaeontology, and physics and psychology, all of which contribute to an understanding of what we are. Without them, normative ethics would be empty theorising.

Jacinta: So I suppose you’re going to write a rejoinder to this ‘normative insignificance of neurology’ essay? Something like ‘the insignificance of normative ethics without neurology’?

Canto: Ha, well that would require reading Selim Berker’s essay, which I’m not sure about – so many other things to explore. But I should end this discussion by saying a few words about the second half of Shaw’s article – and I’ll pass over many other points she’s made. This section deals with the collusion of some psychologists, practitioners of the above-mentioned ‘positive psychology’, with the CIA and the US Department of Defence in the commission of torture.

Jacinta: And what exactly is this ‘positive psychology’?

Canto: Well, to explain that would require a large digression. Suffice to say for now that it’s about using psychology to make us more resilient, and in some sense ethically superior, or more benign, humans. Shaw dwells on this at some length, but claims that in spite of much rhetoric, these psychologists can only offer what she calls the bare, Hobbesian ethic of avoidance of strife. However, she herself is unable to point to a more robust, or a deeper, ethic. She presumably believes in one, but she doesn’t enlighten us as to what it might be. And this is very striking because the tale of these psychologists’ collusion with the Bush administration  on torture, and the huge financial gain to them in applying ‘learned helplessness’, a theory of Seligman’s, to the application of torture, is truly shocking.

Jacinta: So it would be a question of what, in their make-up, allowed them to engage in such unethical behaviour, and was it the lack of a deep ethical understanding, beyond ‘bare Hobbesianism’?

Canto: Right, and my answer would be that, although two psychologists took up this lucrative offer to ‘serve the state’, there would have been others who refused, and would any of them, on either side, have made their decision on the basis of some rigorous normative ethic?

Jacinta: I’m quite sure I wouldn’t have colluded with that sort of thing for all the terracotta warriors in China, but I’m also sure it wouldn’t have been for deep philosophical reasons. I just have a kind of visceral revulsion for physical violence and bullying as you know, and I wouldn’t be able to live with myself if I’d facilitated the premeditated cruel and unusual punishment of others. I’m not even sure if it’s about empathy, but it’s not a particularly reasoned position.

Canto: Yes, and so the only way to understand why some people are more prone to do unethical things – actions outside of the ever-changing standards of community ethics – might be to look at individual psychology, and neurology, and genetics, which takes us further away from normative ethics than ever.

Jacinta: Yes, and didn’t we read, in Sam Kean’s The tale of the duelling neurosurgeons, about a poor fellow in his mid-fifties who suddenly started engaging in paedophile acts, something he had never showed any signs of before? A brain scan revealed a large tumour pressing on parts of the brain responsible for higher-order decision-making (to put it over-simplistically). When the tumour was removed he returned to ‘normal’, until some time later he regressed to paedophile acts. A further scan showed they didn’t remove all the tumour and it had regrown. After another more successful operation he was cured and never diddled again. But the consequences of his actions for his victims when ‘not himself’ would have required him to be punished, on a consequentialist ethical view, wouldn’t they?

Canto: Very good point. And yet, and yet… can it be true that we’ve barely gone further in our ethics than the Golden Rule, or Aristotle’s mean between extremes?

Jacinta: We’re animals, don’t forget. Okay we’re animals that have managed to detect waves from space that are a tiny fraction of the diameter of a proton, but we’re still not that good at being nice to each other. And the extent to which we’re able to be nice to each other, and follow social norms, that’s a matter of our individual psychology, our neurology, our individual and cultural circumstances, our genes and our epigenetic profile, so much particular stuff that philosophical ethics, with its generalities, can’t easily deal with.

Written by stewart henderson

February 26, 2016 at 8:37 am

women and men: un discours sans fin

leave a comment »

Angel and Devil

Jacinta: Okay Canto, I rather hesitate to open up this subject, because I can’t see an end to it, but I want you to repeat here something you’ve said to me before about women and power, which goes to differences between men and women, an area subject to endless debate and contestation.

Canto: Ah well, I was considering how political power, in the world, is largely in the hands of men, and what the world would be like if the situation was reversed. It’s my humble opinion that the world would be less violent, more collaborative, and a lot more fun.

Jacinta: Well as a woman I’m obviously pleased to hear you say that, but we do try to look at evidence rather than personal opinion here, so what in the way of evidence leads you to this conclusion?

Canto: Well… where do we begin? Simone de Beauvoir famously wrote that women are made and not born, a highly contestable truism as it seems that women are actually wired differently from men, having less neurons but more connections between neurons, in toto and on average, so the very question of what it means to be a woman, or a man is one we’re unlikely to get to the bottom of, but I’d like to start with bonobos, always a favourite topic of mine. They appear to have diverged from chimpanzees only between a million and two million years ago, and they look very similar to chimps, which is likely why they weren’t identified as a separate species until the 1930s, and the differences seem to be far more social than anatomical. I mean, they share the same sexual dimorphism as chimps, and humans, and yet they’re essentially matriarchal, due it seems to social arrangements rather than individual size and strength. That gives me great hope for humans, especially now that physical size and strength are less relevant than ever as leadership qualities.

Jacinta: Ah, well now I get the fun part – you think a human matriarchal society will turn out to be a gigantic mutual wankfest. But what about civilisation? What about science and technology? Considering that women, regardless of culture or nationality, are more into astrology, fortune-telling, spiritualism, religion, naturopathy, and virtually every other pseudo-science and primitivism you care to mention, than men are.

Canto: Well, you’re talking about statistical differences, but you well know that there are many fine female astrophysicists, neurosurgeons, geneticists, experimental psychologists, whatever. You’re hardly the only female skeptic, even if they’re in a minority. And who knows what would happen if females were in a majority, with a history of being in a majority, with respect to leadership and power? Maybe you’d find then that it was men who were more into pseudo-science, statistically speaking.

Jacinta: True, and that brings me to a study analysed on the Skeptics’ Guide to the Universe recently. I had read, like you, that women, overall, had more white matter (the myelinated connections between neurons) than men – by a large factor, and that men had more grey matter, though this was concentrated around particular areas such as the amygdalae and the hypothalamus. However, in the study referred to, the researchers wanted to find if there were any categorical differences between male and female brains. They looked at 4 data sets of MRI and fMRI scans, checking out anatomical and connectional or networking differences, to make comparisons. According to SGU’s Steven Novella (a practising neurologist), the media over-simplified the findings as saying there were no differences, but in fact it was more interesting than that. Novella found this study to be essentially an exercise in examining how we categorise things (how do we define and categorise a disease, for example, or a planet, or a species). How we do so depends on a range of factors, and increasing knowledge, and better technology, helps us to develop parameters for categorising…

Canto: Though this also raises more problems… the more we know or learn, the more problematic our previous categories tend to become…

Jacinta: Anyway, in the case of female and male brains, the researchers distinguished between categorical differences and statistical differences. They used genitalia as a categorical difference. As Novella explains it, with genitalia we have a bimodal system, with male and female equipment…

Canto: I prefer to call it tackle…

Jacinta: And nothing really between. The vast majority of people, as subjects, can be placed in one category or another. Of course there are exceptions, but they are, always arguably, statistically insignificant. So, using this as a yardstick, the researchers wanted to know if there are categorical differences between male and female brains in the same way that there are categorical differences between male and female genitalia. One way to distinguish between categorical and statistical differences is whether, once you know which category an individual belongs to, that provides certainty about their particular traits. If it does, you have a categorical difference. So the researchers looked at about 40 different anatomical and functional aspects of the brain. They found that, generally speaking, there are statistical differences between males and females, in the size of various regions, the richness of the networks in various regions, but with a lot of overlap between the sexes; so it was statistical but not categorical. And the study didn’t look at causes of these differences, whether biological or social (we know that brains can be wired up through social conditioning to some degree). But they also did studies of individuals over the range of the 40 anatomical and functional features to determine how many were ‘typically’ male or female, or somewhere in between. One way to capture this was to ask – what percentage of people had 100% of their brain regions (those 40 features analysed) that were ‘typical’ of their sex? Among the 4 data sets, that percentage was 0 to 8%. So, very few men have ‘all-male’ brain regions, in terms of size and connections. Some 28% to 58% had a mixture of both.

Canto: So let me get this clear, the essential finding, according to Novella, was that though there were statistical differences in specific brain areas – and these are the differences described in ‘Do men and women have different brains?’ in How Stuff Works, from which the new ussr’s earlier post was largely derived – there is a lot of individual variation, which muddies the water rather a lot.

Jacinta: Yes, and I would say hopelessly, at least for those who want to think in stereotypes. As Novella puts it, people are mosaics of male and female traits. Another way of thinking about this, again put succinctly by Novella, is that we can’t assume that because a person is male – or female – we know what that person’s brain regions will be like. Statistical differences can’t automatically tell us about the brain region of any individual. There is no typically male or female brain in the way that there are typically male or female genitalia. And that is really interesting, and it might even mean that it’s illegitimate to say, ‘oh she’s female but she thinks like a man’, or ‘but she has a male brain’. There’s no male brain, or female brain, there are individual brains that are a product of all the influences, genetic, epigenetic, environmental, social, hormonal, psychological, whatever you can think of that influences brain activity and wiring.

Canto: And yet, and yet. Statistical differences do count for something don’t they? We still have the statistics showing that women are more into astrology and naturopathy than men…

Jacinta: Yes but what this study shows is that you can’t base this on some essentialist argument about female brains, and isn’t that a good thing?

Canto: Well, definitely, but then it works the other way. My argument that if women ruled we’d be so much better off can’t be based on anything essentialist either! Maybe being in power would turn their brains into something  like the statistically typical male brain. My hopes are turning to dust…

Jacinto: No, no, don’t despair Canto. Consider the bonobos of the jungle…

MM7994_110120_05472-596x397

Written by stewart henderson

December 20, 2015 at 11:42 pm

Posted in brain, gender, genetics, ideology, neurology, sex

Tagged with , ,

this one’s for the birds

leave a comment »

clevercrow1

Canto: If anybody doesn’t appreciate the beauty and complexity and general magnificence of birds they should pee off and never darken this blog again.

Jacinta: Right. Now what brought that on, mate?

Canto: Oh just a general statement of position vis-à-vis other species. Charles Darwin, an old friend of mine, was pretty disdainful of human specialness in his correspondence, but he kept a low profile – on this and everything else – in public. I want to be a bit more overt about these things. And one of the things that really amazes me about birds, apart from their physical beauty, is how much goes on in those teeny noggins of theirs.

Jacinta: Yes, but what really brought this on? I haven’t heard you rhapsodising about birds before.

Canto: You haven’t been inside my vast noggin mate. Actually I’ve been taking photos – or trying to – of the bird life around here; magpies, magpie-larks, crows, rainbow lorikeets, honeyeaters, galahs, corellas, sulphur-crested cockies, as well as the pelicans, black swans, cormorants, moorhens, coots and mallard ducks by the river, not to mention the ubiquitous Australian white ibis and the masked lapwing.

Jacinta: Well I didn’t know you cared. Of course I agree with you on the beauty of these beasties. Better than any tattoo I’ve seen. So you’re becoming a twitcher?

Canto: I wouldn’t go that far, but I’ve been nurturing my fledgling interest with a book on the sensory world of birds, called, appropriately, Bird sense, by a British biologist and bird specialist, Tim Birkhead. It’s divided into sections on the senses of birds – a very diverse set of creatures, it needs to be said. So we have vision, hearing, smell, taste, touch, and that wonderful magnetic sense that so much has been made of recently.

Jacinta: So we can’t generalise about birds, but I know at least some of them have great eyesight, as in ‘eyes like an eagle’.

Canto: Well, as it happens, our own Aussie wedge-tailed eagle has the most acute sense of vision of any creature so far recorded.

Jacinta: Well actually it isn’t ours, it just happens to inhabit the same land-form as us.

Canto: How pedantic, but how true. But Birkhead points out that there are horses for courses. Different birds have vision adapted for particular lifestyles. The wedge-tail’s eyes are perfectly adapted to the clear blue skies and bright light of our hinterland, but think of owl eyes. Notice how they both face forward? They’re mostly nocturnal and so they need good night vision. They’ve done light-detection experiments with tawny owls, which show that on the whole they could detect lower light levels than humans. They also have much larger eyes, compared with other birds. In fact their eyes are much the same size as ours, but with larger pupils, letting in more light. They’ve worked out, I don’t know how, that the image on an owl’s retina is about twice as bright as on the average human’s.

Jacinta: So their light-sensitivity is excellent, but visual acuity – not half so good as the wedge-tailed eagle’s?

wedge-tailed eagle - world's acutest eyes

wedge-tailed eagle – world’s acutest eyes

Canto: Right – natural selection is about adaptation to particular survival strategies within particular environments, and visual acuity isn’t so useful in the dark, when there’s only so much light around, and that’s why barn owls, who have about 100 times the light-sensitivity of pigeons, also happen to have very good hearing – handy for hunting in the dark, as there’s only so much you can see on a moonless night, no matter how sensitive your eyes are. They also learn to become familiar with obstacles by keeping to the same territory throughout their lives.

face of a barn owl - 'one cannot help thinking of a sound-collecting device, quoth researcher Masakazu Konishi

face of a barn owl – ‘one cannot help thinking of a sound-collecting device’, quoth researcher Masakazu Konishi

Jacinta: So they don’t echo-locate, do they?

Canto: No, though researchers now know of a number of species, such as oilbirds, that do. Barn owls, though, have asymmetrical ear-holes, one being higher in the head than the other, which helps them to pinpoint sound. It was once thought that they had infra-red vision, because of their ability to catch mice in apparently total darkness, but subsequent experiments have shown that it’s all about their hearing, in combination with vision.

Jacinta: Well you were talking about those amazing little brains of birds in general, and I must say I’ve heard some tales about their smarts, including how crows use cars to crack nuts for them, which must be true because it was in a David Attenborough program.

Canto: Yes, and they know how to drop their nuts near pedestrian crossings and traffic lights, so they can retrieve their crushed nuts safely. The genus Corvus, including ravens, crows and rooks, has been a fun target for investigation, and there’s plenty of material about their impressive abilities online.

seeing is believing

seeing is believing

Jacinta: So what other tales do you have to tell, and can you shed any light on how all this cleverness comes in such small packages?

Canto: Well Birkhead has been studying guillemots for years. These are seabirds that congregate on cliff faces in the islands around Britain, and throughout northern Europe and Canada. They’re highly monogamous, and get very attached to each other, and thereby hangs another fascinating tale. They migrate south in the winter, and often get separated for lengthy periods, and it’s been noted that when they spot their partner returning, as a speck in the distance, they get highly excited and agitated, and the greeting ceremony when they get together is a joy to behold, apparently – though probably not as spectacular as that of gannets. Here’s the question, though – how the hell can they recognise their partner in the distance? Common guillemots breed in colonies, butt-to-butt, and certainly to us one guillemot looks pretty well identical to another. No creature could possibly have such acute vision, surely?

Jacinta: Is that a rhetorical question?

Canto: No no, but it has no answer, so far. It’s a mystery. It’s unlikely to be sight, or hearing, or smell, so what is it?

Jacinta: What about this magnetic sense? But that’s only about orientation for long flights, isn’t it?

Canto: Yes we might discuss that later, but though it’s obvious that birds are tuned into their own species much more than we are, the means by which they recognise individuals are unknown, though someone’s bound to devise an ingenious experiment that’ll further our knowledge.

Jacinta: Oh right, so something’s bound to turn up? Actually I wonder if the fact that people used to say that all Chinese look the same, which sounds absurd today, might one day be the case with birds – we’ll look back and think, how could we possibly have been so blind as to think all seagulls looked the same?

Canto: Hmmm, I think that would take a lot of evolving. Anyway, birds are not just monogamous (and anyway some species are way more monogamous than others, and they all like to have a bit on the side now and then) but they do, some of them, have distinctly sociable behaviours. Ever heard of allopreening?

Jacinta: No but I’ve heard the saying ‘birds of a feather flock together’ and that’s pretty sociable. Safety in numbers I suppose. But go on, enlighten me.

Canto: Well, allopreening just means mutual preening, and it usually occurs between mates – and I don’t mean in the Australian sense – but it’s also used for more general bonding within larger groups.

Jacinta: Like, checking each other out for fleas and such, like chimps?

Cant: Yeah, though this particular term is usually reserved for birds. Obviously it serves a hygienic purpose, but it also helps calm ruffled feathers when flocks of colonies live beak by jowl. And if you ever get close enough to see this, you’ll notice the preened bird goes all relaxed and has this eyes half-closed, blissed-out look on her face, but we can’t really say that coz it’s anthropomorphising, and who knows if they can experience real pleasure?

Jacinta: Yes, I very much doubt it – they can only experience fake pleasure, surely.

Canto: It’s only anecdotal evidence I suppose, but that ‘look’ of contentment when birds are snuggling together, the drooping air some adopt when they’ve lost a partner, as well as ‘bystander affiliation’, seen in members of the Corvus genus, all of these are highly suggestive of strong emotion.

Jacinta: Fuck it, let’s stop beating about the bush, of course they have emotions, it’s only human vested interest that says no, isn’t it? I mean it’s a lot easier to keep birds in tiny little cages for our convenience, and to burn their beaks off when they get stressed and aggressive with each other, than to admit they have feelings just a bit like our own, right? That might mean going to the awful effort of treating them with dignity.

Canto: Yyesss. Well on that note, we might make like the birds and flock off…

how the flock do they do that?

how the flock do they do that?

Written by stewart henderson

November 13, 2015 at 12:06 pm

exercise is medicine

leave a comment »

059fd5b761874d05d18b912fe572981e

I read recently that regular moderate exercise sloshes up the blood, washing immune cells from vessel walls. This brings those cells back into the mainstream so to speak, where they can be more effective in combating infection. It makes no small difference – a simple study in which 500 adults were tracked for 12 weeks found that those who engaged in regular aerobic exercise sessions were found to suffer considerably less from upper respiratory tract infections – precisely my personal area of concern. Levels of immune cells in the blood double during exercise.

There’s also good news in this for those of us who couldn’t become gym junkies no matter how hard we tried. Too much exercise (but that means quite a lot) can undo all the good by raising levels of cortisol, noradrenaline and other stress hormones, which alter immune cell functioning. Stress, though, is another one of those complex indicators of health. Mild bouts of stress can be healthful, again boosting blood levels of immune cells. So don’t relax too much, but don’t overdo it.

Even so, exercise helps with everything, and that’s something worth promoting because the recommended dose of exercise isn’t being swallowed by the majority of people in the west. Of course we’ve always kind of known about the benefits of exercise, but the hard evidence has really been coming in lately. A really interesting study was published in the Lancet in 1953, at a time when the rising incidence of heart attacks was becoming a worry. It compared bus conductors to bus drivers on London’s busy double-deckers. The conductors, who spent much of their working day running up and down steps, had half as many heart attacks as their driver colleagues. This landmark study has of course been followed by many others that have confirmed the positive effects of exercise in reducing the incidence of stroke, cancer, diabetes, liver and kidney disease, osteoporosis, dementia and d barkepression.

So what exactly is the goldilocks zone for exercise? Well, anything is better than nothing, and most of us know we’re not doing enough. I’m not quite a senior citizen yet, but studies have been done with the elderly requiring them to do 40 minute walks three times a week, which is hardly strenuous. I catch a tram to work, which requires a ten-minute walk each way, and then a five minute walk each way to my workplace – 30 minutes a day, five days a week, though it would doubtless be better if those 30 minutes were continuous, and if I didn’t dawdle much of the time. The benefits of such a regime have been shown through before-and-after brain imaging. Expansion of the hippocampi, either through the growth of new brain cells, or greater synaptic connectivity, and a restoration of long-distance connections across the brain.

Mental exercise shouldn’t be forgotten either. It has been known for a couple of decades that intellectual stimulation can provide a kind of ‘cognitive reserve’ which can buffer us against the kinds of physical brain deterioration typical of Alzheimer’s and other forms of dementia, but clearer proofs of this have been gathered recently. Magnetic resonance imaging of Alzheimer’s sufferers has caught the goings-on in the brain while cognitive tasks are being performed. Highly educated people – brain workers  if you will – are better able to develop alternative neuronal networks to compensate for damaged areas. I would assume though that it’s not so much about education but about brain usage. Keep tackling new things. Keep using your brain in new ways. And your body for that matter.

Cognitive reserve is now seen as a real thing, and has been pinpointed as residing in the dorsolateral prefrontal cortex, a key area for learning, short term memory, attention and language. Increased activity in this area suggests flexibility in thinking and problem solving. Information processing efficiency is also a key to a healthy brain. Having a high IQ, something I’ve often been sceptical about in the past, is an indication of information processing efficiency, even if the information is often culturally specific. It appears that physical brain deterioration, from Alzheimer’s, stroke and and other causes, can be fended off by compensating neural network development and increased information processing efficiency in certain people, until the deterioration becomes too great to be compensated for, after which things tend to go downhill very rapidly. By the time the symptoms of Alzheimer’s appear in such people, the  physical damage is already well advanced.

A major message from all this is that you should try to develop lifestyle habits involving physical and mental exercise. Always a work in progress.

I note that one of the in terms these days is ‘hat tip’ (h/t), so h/t for this piece to New Scientist, the collection, edition 3: a guide to a better you.

Written by stewart henderson

November 20, 2014 at 8:19 am

Posted in diet, exercise, fitness, lifestyle

Tagged with , ,

aerosinusitis

with one comment

it's all about Boyle's Law, apparently (P1V1 = P2V2)

it’s all about Boyle’s Law, apparently (P1V1 = P2V2)

Aerosinusitis, also called barosinusitis, sinus squeeze or sinus barotrauma is a painful inflammation and sometimes bleeding of the membrane of the paranasal sinus cavities, normally the frontal sinus. It is caused by a difference in air pressures inside and outside the cavities.

The above quote is from Wikipedia, and it describes something I experienced on two flights recently (see previous post), though I experienced it, or felt I experienced it, in the ears (I’ve learned not to trust my own perceptions). On the first flight, I experienced a build-up of pressure until a sudden change as of a bubble bursting in some inner cavity, and then everything was fine. I’ve had similar, but less intense, experiences in a car when driving up into the hills near my home. In fact, they’ve been so mild that I’ve often looked forward to them as a physical sensation, and I know it’s common because people would ask around – have your ears popped yet? On my second flight, the pressure built up again on the descent, and I fully expected the bubble to burst as it always did. But the pain just increased, to an excruciating level, so that my face was all scrunched up and I was gasping, squealing and whimpering like a pup. By the time we landed, though, the worst of the pain was gone, and it gradually got better over the next hour or so, and although I could still ‘feel’ it 24 hours later, it was more a memory of a feeling than the thing itself. I don’t know whether my pain was severe or relatively mild as I’ve never felt other people’s pain. This was one of the first things I had ‘deep’ thoughts about as a child. When I was nine or ten years old I fell, while running, and bashed my shin against the edge of our front porch, and I still think that was the most extreme pain I’ve ever felt in my life. I screamed and screamed, and amongst the comforting remarks came the inevitable ‘come on now, stop squealing, it’s not that bad’. Of course this made me angry and resentful but it also raised the questions, ‘am I over-reacting? Would others react like this in the same circumstances? Would they feel the same pain? How could we ever know?’ And along with those questions was one that always ate at me, and probably still does – can I control my pain, can I obliterate it with the power of my mind? I’d sell my soul, FWIW, for total control. But that’s a rather too large side-issue for this post. The Wikipedia article, though, does classify aerosinusitis in terms of pain, along with other more measurable symptoms:

Grade I includes cases with mild transient sinus discomfort without changes visible on X-ray. Grade II is characterized by severe pain for up to 24 h, with some mucosal thickening on X-ray. Patients with grade III have severe pain lasting for more than 24 h and X-ray shows severe mucosal thickening or opacification of the affected sinus; epistaxis or subsequent sinusitis may be observed.

Annoyingly, my own intense but transitory experience doesn’t fit into any of those grades. I also find that this extremely technical article makes no mention at all of ear pain. Much of the focus is on the frontal sinuses, situated behind the brows and connected to the nose or nasal meatus, which naturally makes me uncertain about where my pain was located. Interestingly, the frontal sinuses still haven’t come into existence at birth, and aren’t fully developed until adolescence, and some 5% of people don’t even have them, which just complicates matters for me. As is mentioned above, the frontal sinuses are part of a whole labyrinth of hollows, bones, cartilaginous membranes and passageways known as the paranasal cavities. I’m hoping that the inner ear, or more accurately the middle ear cavity – technically called the tympanic cavity, is also part of that.

Though ‘ear-popping’ seems to be commonplace, aerosinusitis usually occurs in people who have head colds, or as the article puts it, it’s ‘typically preceded by an upper respiratory tract infection or allergy’. Of course, with my bronchiectasis, I’m effectively in a more or less permanent state of infection, so this may be a problem for me every time I fly.

So, what remedy? Well, the problem for me seems to be with the tympanic cavity or eustachian tube on one side. When I was eight, I perforated my ear drum and had to have an operation. I was told afterwards that I should never hold my nose tight while blowing it, as people do (making that horrible honking nose), as this might damage my eardrum. I remember being fascinated by this connection between the nose and the ears, and of course I’ve always followed the doctor’s advice. I didn’t want to blow my brains out of my ears.

Wikipedia suggests using decongestants or painkillers for mild forms of barotrauma, as does this useful site, which deals more with popping ears. First and foremost, though, it suggests gargling with warm salt water, which was my mother’s advice for many medical problems (she was a nurse).

I’m resisting any description of what I went through as ‘mild’.

Working the eustachian tube or tympanic cavity seems to be a good idea, for example by regular swallowing, chewing gum, sucking sweets, yawning, etc.

Sudafed is highly recommended. I’ll bear that in mind next time.

Written by stewart henderson

May 12, 2014 at 11:50 pm

what is autism and what causes it?

leave a comment »

Brain_Autism

The term ‘autism’ was coined in the 1940s by two physicians working independently of each other, Hans Asperger in Austria and Leo Kanner in the USA, to describe a syndrome the key feature of which was a problem with interacting with others in ‘normal’ ways. Sounds vague, but the problem was anything but wishy-washy to these individuals’ parents and families, and over time a more detailed profile has built up.

The term itself is from the Greek autos, or ‘self’, because those with the syndrome had clear difficulties in interpreting others’ moods and responses, resulting in a withdrawn, often antisocial state. Autistic kids often avoid eye contact and are all at sea over the simplest communication.

Already though, I feel I’m saying too much. When describing autism, it’s common to use words like ‘often’ or ‘sometimes’ or ‘some’, because the symptoms are seemingly so disparate. Much of what follows relies on the neurologist V S Ramachandran’s book The tell-tale brain, especially chapter 5, ‘Where is Steven? The riddle of autism’.

Autistic symptoms can be categorised in two major groups, social-cognitive and sensorimotor. The social-cognitive symptoms include mental aloneness and a lack of contact with the world of other humans, an inability to engage in conversation and a lack of emotional empathy. Also a lack of any overt ‘playfulness’ or sense of make-believe in childhood. These symptoms can be ‘countered’ by heightened, sometimes obsessive interest in the inanimate world – e.g. the memorising of ostensibly useless data, such as lists of phone numbers.

On the sensorimotor side, symptoms include over-sensitivity and intolerance to noise, a fear of change or novelty, and an intense devotion to routine. There’s also a physical repetitiveness of actions and performances, and regular rocking motions.

These two types of symptoms raise an obvious question – how are the two types connected to each other? We’ll return to that.

Another motor symptom, which Ramachandran thinks is key, is a difficulty in physically imitating the actions of others. This has led him to pursue the hypothesis that autism is essentially the result of a deficiency in the mirror neuron system.

In recent years there’s been a lot of excitement about mirror neurons – possibly too much, according to some neurologists. A mirror neuron is one that fires not only when we perform an action but also when we observe it being performed by others. They’ve been found to act in mammals and also, it seems, in birds, and in humans they’ve been found in the premotor cortex, the supplementary motor area, the primary somatosensory cortex and the inferior parietal cortex. It’s easier, however, to locate them than it is to determine their function. Clearly, to describe them as ‘responsible’ for empathy, or intention, is to go too far. As Patricia Churchland points out, ‘a neuron is just a neuron’, and what we describe as empathy or intention will likely involve a plethora of high-order processes and connections, in which mirror neurons will play their part.

With that caveat in mind, let’s continue with Ramachandran’s speculations on autism and mirror neurons. First, we’ll need to be reminded of the term ‘theory of mind’, used regularly in psychology. It’s basically the idea that we attribute to others the same sorts of intentions and desires that we have because of the assumption that they, like us, have that internal feeling and processing and regulating system we call a ‘mind’. A sophisticated theory of mind is one of the most distinctive features of the human species, one which gives us a unique kind of social intelligence. That autism would be related to theory-of-mind deficiencies seems a reasonable assumption, so what is the brain circuitry behind theory of mind, and how do mirror neurons fit into this picture?

Although neuro-imaging has revealed that autistic children have larger brains with larger ventricles (brain cavities) and notably different activity within the cerebellum, this hasn’t helped researchers much, because autism sufferers don’t present any of the usual symptoms of cerebellum damage. It could be that these changes are simply the side effects of genes which produce autism. Some researchers felt it was better to focus on mirror neurons straight-off, as obvious suspects, and to see how they fired and where they connected in particular situations. They used EEG (electroencephalography) as a non-invasive way to observe mirror neuron activity. They focused on the suppression of mu waves, a type of brain wave. It has long been known that mu waves are suppressed when a person makes any volitional movement, and more recently it has been discovered that the same suppression occurs when we watch others performing such movements.

So researchers used EEG (involving electrodes placed on the scalp) to monitor neuronal activity in a medium-functioning autistic child, Justin. Justin exhibited a suppressed mu wave, as expected, when asked to make voluntary movements. However, he didn’t show the same suppression when watching others perform those movements, as ‘neurotypical’ children do. It seemed that his motor-command system was functioning more or less normally, but his mirror-neuron system was deficient. This finding has been replicated many times, using a variety of techniques, including MEG (magnetoencephalography). fMRI, and TMS (transcranial magnetic stimulation). Reading about all these techniques would be a mind-altering experience in itself.

According to Ramachandran, all these confirmations ‘provide conclusive evidence that the [mirror neuron] hypothesis is correct.’ It certainly helps to explain why a subset of autistic children have trouble with metaphors and literality. They have difficulty separating the physical and the referential, a separation that mirror neurons appear to mediate somehow.

A well-developed theory of mind which can anticipate the behaviour of others is clearly a feature of understanding our own minds better. In Ramachandran’s words:

If the mirror-neuron system underlies theory of mind and if theory of mind in normal humans is supercharged by being applied inward, towards the self, this would explain why autistic individuals find social interaction and strong self-identification so difficult, and why so many autistic children have a hard time correctly using the pronouns ‘I’ and ‘you’ in conversation. They may lack a mature-enough self-representation to understand the distinction.

Of course, tons more can be said about the ‘mirror network’ and tons more research remains to be done, but there are many promising signs. For example, the findings about lack of mu wave suppression could be used as a diagnostic tool for the early detection of autism, and some interesting work is being done on the use of biofeedback to treat the disorder. Biofeedback is a process whereby physiological signals picked up by a machine from the brain or body of a subject are represented to the subject in such a way that he or she might be able to affect or manipulate that signal by a conscious change of behaviour or thinking. Experiments have been done to show that subjects can alter their own brain waves through this process. Some experimental work is also being done with drugs such as MDMA (otherwise known as the party drug ‘ecstacy’) which appear to enhance empathy through their action on neurotransmitter release.

So that’s a very brief introduction to autism. Hopefully I’ll come back to it in the future to explore the progress being made in understanding and treating the syndrome.

Written by stewart henderson

October 23, 2013 at 10:25 am

What do we currently know about the differences between male and female brains in humans?

with 3 comments

Picture+3

Having had an interesting conversation-cum-dispute recently over the question of male-female differences, and having then listened to a podcast, from Stuff You Should Know, on the neurological differences between the human male and the human female, which contained some claims which astonished me (and for that matter they astonished the show’s presenters), I’ve decided to try and satisfy my own curiosity about this pretty central question. Should be fun.

The above link is to How Stuff Works, which I think is the written version of the Stuff You Should Know podcast, that’s to say with more content and less humour (and less ads), but I do recommend the podcast, because the guys have lots of fun with it while still delivering plenty of useful and thought-provoking info. Anyway, the conversation I was talking about was one of those kitchen table, wine-soaked bullshit sessions in which one of the participants, a woman, was adamant that nurture was pretty well entirely the basis for male-female differences. I naturally felt sympathetic to this view, having spent much of my life trying to blur the distinctions between masculinity and femininity, having generally been turned off by ultra-masculine and ultra-feminine traits and wanting to push for blended behaviour, which obviously suggests we can control these things through nurturing such a blending. However, I had just enough knowledge of what research has revealed about the matter to say, ‘well no, there are distinct neurological differences between males and females’, but I didn’t have enough knowledge to give more than a vague idea of what these differences were. The podcast further whetted my appetite, but writing about it here should pin things down in my mind a bit more, here’s hoping.

I’ve chosen the title of this post reasonably carefully, with apologies for its clunkiness. For the fact is, we still know little enough about our brains. I’ve mentioned humans, but I expect there are gender differences in the brains of all mammals, so I’m particularly interested in that part of the brain that distinguishes us, though not completely, from other mammals, namely the prefrontal cortex.

Here’s an interesting summary, from a blurb on a New Scientist article by Hannah Hoag from 2008;

Research is revealing that male and female brains are built from markedly different genetic blueprints, which create numerous anatomical differences. There are also differences in the circuitry that wires them up and the chemicals that transmit messages between neurons. All this is pointing towards the conclusion that there is not just one kind of human brain, but two. …

Men have bigger brains on average than women, even accounting for sexual dimorphism, but the two sexes are bigger in different areas. A 2001 Harvard study found that some frontal lobe regions involved in problem-solving and decision-making were larger in women, as well as regions of the limbic cortex, responsible for regulating emotions. On the other hand, areas of the parietal cortex and the amygdala were larger in men. These areas regulate social and sexual behaviour.

The really incredible piece of data, though, is that men have about 6.5 times more grey matter (neurons) than women, while women have about ten times more white matter (axons and dendrites, that’s to say connections) than men. These are white because they’re sheathed in myelin, which allows current to flow much faster. On the face of it, I find this really hard, if not impossible, to believe. I mean, that’s one effing huge difference. It comes from a study led by Richard Haier of the University of California, Irvine and colleagues from the University of New Mexico, but this extraordinary fact appears to be of little consequence for male performance in intellectual tasks as compared to female. What appears to have happened is that two different ‘brain types ‘ have evolved alongside and in conjunction with each other to perform much the same tasks. Other research appears to confirm this amazing fact, finding that males and females access different parts of the brain for performing the same tasks. In an experiment where men and women were asked to sound out different words, Gina Kolata reported on this back in early 1995 in the New York Times:

The investigators, who were seeking the basis of reading disorders, asked what areas of the brain were used by normal readers in the first step in the process of sounding out words. To their astonishment, they discovered that men use a minute area in the left side of the brain while women use areas in both sides of the brain.

After lesions to the left hemisphere, men more often develop aphasia (problems with understanding and formulating speech) than women.

While I’m a bit sceptical about the extent of the differences between grey and white matter in terms of gender, it’s clear that these and many other differences exist, but they’re difficult to summarise. We can refer to different regions, such as the amygdala, but there are also differences in hormone activity throughout the brain, and so many other factors, such as ‘the number of dopaminergic cells in the mesencephalon’, to quote one abstract (it apparently means the number of cells containing the neurotransmitter dopamine in the midbrain). But let me dwell a bit on the amygdala, which appears to be central to neurophysiological sex differences.

Actually, there are 2 amygdalae, located within the left and right temporal lobes. They play a vital role in the formation of emotional memories, and their storage in the adjacent hippocampus, and in fear conditioning. They’re seen as part of the limbic system, but their connections with and influences on other regions of the brain are too complex for me to dare to elaborate here.  The amygdalae are larger in human males, and this sex difference appears also in children from age 7. But get this:

In addition to size, other differences between men and women exist with regards to the amygdala. Subjects’ amygdala activation was observed when watching a horror film. The results of the study showed a different lateralization of the amygdala in men and women. Enhanced memory for the film was related to enhanced activity of the left, but not the right, amygdala in women, whereas it was related to enhanced activity of the right, but not the left, amygdala in men.

This right-left difference is significant because the right amygdala connects differently with other brain regions than the left. For example, the left amygdala has more connections with the hypothalamus, which directs stress and other emotional responses, whereas the right amygdala connects more with motor and visual neural regions, which interact more with the external world. Researchers are of course reluctant to speculate beyond the evidence, but as a non-scientist, but as a pure dilettante I don’t give a flock about that – just don’t pay attention to my ravings. It seems to me that most female mammals, who have to tend offspring, would be more connected to the flight than the fight response to danger than the unencumbered males would be??? OMG, is that evolutionary psychology?

It’s interesting but hardly surprising to note that studies have shown this right-left amygdala difference is also correlated to sexual orientation. Presumably – speculating again – it would also relate to those individuals who sense from early on that they’re born into ‘the wrong gender’.

Neuroimaging studies have found that the amygdala develops structurally at different rates in males and females, and this seems to be due to the concentration of sex hormone receptors in the different genders. Where there’s a size difference there appears to be a big difference in number of sex hormones circulating in the area. Again this is difficult to interpret, and it’s early days for this research. One brain structure, the stria terminalis, a bundle of fibres that constitute the major output pathway for the amygdala, has become a focus of controversy in the determination of our sense of gender and sexual orientation. As a dilettante I’m reluctant to comment much on this, but the central subdivision of the bed nucleus of the stria terminalis is on average twice as large in men as in women, and contains twice the number of somatostatin neurons in males. Somatostatin is a peptide hormone which helps regulate the endocrine system, which maintains homeostasis.

What all this means for the detail of sex differences is obviously very far from being worked out, but it seems that the more we examine the brain, the more we find structural and process differences between the male and female brain in humans. And it’s likely that we’ll find similar differences in other mammals.

It’s important to note, though, that these differences, as in other mammals, exist in the same species, in which the genders have evolved to be codependent and to work in tandem towards their survival and success. Just as it would seem silly to say that female kangaroos are smarter/dumber than males, the same should be said of humans. The terms smart/dumb are not very useful here. The two genders, in all mammals, perform complementary roles, but they’re also also both able to survive independently of one another. The amazing thing is that such different brain designs can be so similar in output and achievement. It’s more impressive evidence of the enormous diversity of evolutionary development.

Written by stewart henderson

October 6, 2013 at 9:30 am

the latest on dolphin language

leave a comment »

dolphins

I wrote, or semi-podcasted, on the brain of the dolphin a while back, and much of my focus was on language, often described as the sine qua non of cerebral complexity and intelligence. In that piece, posted about eight months ago, I reported that there there was little clear evidence of any complex language in dolphins, but there had been some interesting research. Allow me to quote myself:

Dolphins do sometimes mimic the whistles of other dolphins too, particularly those of their closest relatives, but signature whistles as a form of recognition and differentiation, are a long way from anything like language. After all, many species can recognise their own mates or kin from the distinctive sounds they make, or from their specific odour, or from visual cues. However, a clever experiment carried out more recently, which synthesised these whistles through a computer, so that the whistle pattern was divorced from its distinctive sound, found that the dolphins responded to these patterns even when produced via a different sound. It seemed that they were recognising names. It’s undoubtedly intriguing, but clearly a lot more research is required.

So it was with some interest that I heard, on a recent SGU podcast, an account of what seemed an elaboration of the experiments conducted above, further confirming that dolphins recognised names. Or were they just reporting the same experiments? Having re-listened to the SGU segment, I find that they didn’t give any details of who did the study they were talking about, the only mention was to a news article. So I’ll just report on anything I can find, because it’s such a cool subject.

There’s a nice TED talk, from February 2013, on dolphin language and intelligence here, which is about researches over many years in the Bahamas with Atlantic spotted dolphins. As always, I suggest you listen to the talk and do the ‘research on the research’ yourself, as I’m not a scientist and I’m only doing this to educate myself, but hopefully I can also engage your interest.

Dolphins have a brain- to-body ratio (a rough but not entirely reliable guide to intelligence) second only to humans, they pass the mirror self-awareness test (another standard for intelligence that’s been questioned recently), they can be made to understand very basic artificial human language tests, and they’re at least rudimentary tool users. But the real interest lies in their own, obviously complex, vocal communication systems.

I probably misrepresented the information on signature whistles before: they’re only what we humans have been able to isolate from all the ‘noise’ dolphins make, because they’re recognisable and interpretable to us. Denise Herzing, in her TED talk, refers to ‘cracking the code’ of dolphins’ communication systems. She and her team have been working with the dolphins over the summer months for 28 years. They work with underwater cameras and hydrophones to correlate the sounds and behaviours of their subjects. This particular species is born without spots, but is fully black-and-white spotted by age 15. They go through distinct developmental phases making them easy to track over the years (dolphins live into their early 50s). The distinctive spotted patterns make them easy to track individually. Females are sexually mature by about age 9, males at around 15. Dolphins are very sexually active with multiple partners, so paternity is not always easy to determine, so this is worked out by collecting fecal matter and analysing its DNA. So, over 28 years, three generations have been tracked.

What really interests me about the dolphin communication question is their relation to sound and their use of sound compared to ours. Herzing describes them as ‘natural acousticians’ who make and hear sounds ten times as high as humans do. They also have highly developed vision, so they communicate via bodily signals, and they have taste and touch. Sound is of course a wave or vibration which can be felt in water, the acoustic impedance of tissue in water being much the same as on land. Tickling, of a kind, does occur.

Signature whistles are the most studied dolphin sounds, as the most easily measured. They’re used as names, in connecting mothers and calves for example.  But there are many other vocalisations, such as echo-location clicks (sonar), used in hunting and feeding, and also socially, in tightly-packed sound formations – buzzes, which can be felt in the water. They’re used regularly by males courting females. Burst-pulse sounds are used in times of conflict, and they are the least studied, most hard to measure of dolphin sounds.

Interestingly, Herzing notes that there’s a lot of interaction and co-operation in the Bahamas between spotted and bottle-nose dolphins, including baby-sitting each others’ calves, and combining to chase away sharks, but little mention is made, in this talk at least, of any vocal communication between the two species. When she goes on to talk about synchrony, I think she’s only talking about within-species rather than between species. Synchrony is a mechanism whereby the dolphins co-ordinate sounds and body postures to create a larger, stronger social unit.

As I’ve mentioned, dolphins make plenty of sounds beyond the range of human hearing. Underwater equipment is used to collect these ultrasonic sounds, but we’ve barely begun to analyse them. Whistle complexity has been analysed through information theory, and is highly rated even in relation to human languages, but virtually nothing is known about burst-pulse sounds, which, on a spectrogram, bear a remarkable similarity to human phonemes. Still, we have no Rosetta Stone for interpreting them, so researchers have developed a two-way interface, with underwater keyboards, with both visual and audible components. In developing communication, they’ve exploited the dolphins’ natural curiosity and playfulness. Dolphins, for example, are fond of mimicking the postures and vocalisations of humans, and invite the researchers into their play. Researchers have developed artificial whistles to refer to dolphins’ favourite toys, including sargassum, a kind of seaweed, and ropes and scarves, so that they can request them via the keyboard interface. These whistles were outside the dolphins’ normal repertoire, but easily mimicked by them. The experiment has been successful, but of course it isn’t known how much they understand, or what’s going through their minds with all this. What is clear, however, is that the dolphins are extremely interested in and focused on this type of activity, which sometimes goes on for hours.

This research group has lately been using an underwater wearable computer, known as CHAT (cetacean hearing and telemetry), which focuses on acoustic communication. Sounds are created via a forearm keyboard and an underwater speaker for real-time Q and A. This is still at the prototype stage, but it uses the same game-playing activity, seeking to empower dolphins to request toys, as well as human game-players, through signature whistles. It’s hoped that the technology will be utilisable for other species too in the future.

All of this is kind of by way of background to the research reported on recently. This was really about dolphin memory rather than language – or perhaps more accurately, memory triggered by language. Dolphins recognise the sounds of each others’ signature whistles, but would they recognise the whistle of a dolphin they’d not been in contact with for years. And for how many years? Researcher Jason Bruck tested this by collecting whistles of dolphins in captive facilities throughout the US. Dolphins are moved around a lot, and lose contact with friends and family. Sounds a bit like the foster-care system. Bruck found that when dolphins heard the signature whistles of old companions played to them through an underwater speaker, they responded with great attention and interest. One dolphin was able to recognise the whistle of a friend from whom he was separated at age two, after twenty years’ separation. As biologist Janet Mann put it, this is a big breakthrough but not so surprising, as dolphins are highly social animals whose lives, like ours, are criss-crossed by profound connections with others, with effects positive, negative and equivocal.  It’s important, too, for what it suggests – the capacity to remember so much more, in the  same coded way. in other words, a complex language, perhaps on a level with ours. Will we ever get to crack this code? Why not. Hopefully we won’t stop trying.

Written by stewart henderson

August 24, 2013 at 3:55 pm

some thoughts on hypnotism

leave a comment »

hmm, are those waves or particles, or both, or neither?

hmm, are those waves or particles, or both, or neither?

Today I want to write about a subject I know bugger all about but which has always fascinated me – hypnotism. The first encounter with it that made an impression on me was as a schoolkid coming home for lunch, as we did every day – our parents were both at work – and catching some of the midday variety show, which regularly featured a bearded and mildly exotic hypnotist who, with nothing more, apparently, than snappings of fingers, intense gazes and a voice of calm command, got ordinary people to crawl on all fours and bark like dogs, or some other form of mild humiliation, to the incredibly complacent amusement of the studio audience – or so it seemed to me.

This was all very flummoxing to my nascent scepticality. Could this really be real? If so, the consequences, it seemed to me, were enormous for a person’s autonomy, or sense of self-ownership. More important, could this ever be done to me? My impulse would be to fight such an outrageous invasion of, indeed takeover of, what I held to be more dear to me than anything else – my independence of thought and action.

So I drew two conclusions from these observations. First, that it couldn’t be real – that there must be at least some fakery involved. Second, that if it was real, I, if not the entire human population, needed to be protected from such outrages, by law. If we could be made to bark like dogs, why couldn’t we be made, by an evil genius, to rip out each others’ throats, to murder our loved ones, to fly planes into buildings or to press nuclear buttons? In fact, if this power to control minds was real, no human law could prevent it from being abused. It followed, according to the Law of Wishful Thinking, that this power couldn’t be real.

But as life went on, the urgency of this issue receded, though the questions raised were never resolved. A lot of nasty things happened, people ripped each other apart, either physically or psychologically, and people murdered those they loved, and flew planes into buildings and declared wars that slaughtered thousands, but the motives seemed all too clear and basic and perennially human. No evil geniuses needed to be posited.  Manipulation might be suspected at times, but of the common and garden type. Hypnosis appeared surplus to requirements, so much that I never really considered it.

The old questions resurfaced on listening to Brian Dunning, of skeptoid.com, presenting a podcast on hypnosis, which provided some interesting historical background, for example that the term ‘hypnosis’ was coined by an English surgeon, James Braid, in the 1840s. Braid became obsessed with the practice after seeing a stage performance, and worked on utilising it for medical purposes. He even wrote a book about hypnotism which, according to Dunning, still stands up well today.

Dunning also addresses an issue that has always vexed me – that of susceptibility to hypnosis. In the 50s, Stanford University developed a rough measure of susceptibility which they named the Stanford Hypnotic Susceptibility Scales. Here’s Dunning’s description:

It’s a series of twelve short tests to gauge just how hypnotized you really are, scored on a scale of 0 (not at all) to 12 (completely). They are responses to simple suggestions like immobilization, simple hallucinations, and amnesia. Most people score somewhere in the middle, and nearly everyone passes at least one of the tests. There’s even a script you can follow to hypnotize anyone and put them through the scales, with a little bit of practice.

Not only do people score very differently, there’s been little progress made in predicting what types of people are most susceptible. Subjects’ suppositions about their own susceptibility don’t correlate at all with test scores. Supposed predictors like intelligence, creativity, desire to become hypnotized, and imaginativeness also have no correlation. Most likely, you yourself are a decent candidate who will score near the middle of the scale, regardless of whether you think you will or not.

These findings are not reassuring. Maybe it’s a male thing (and one of the reasons males are less willing to visit the doctor), but I’ve always wanted to be, and so felt myself to be, ‘in control’ of my physical and mental health. For example, I didn’t need a doctor to tell me I was creeping up in weight towards obesity, with all the attendant health issues. I realised it myself, took control, reduced my general food intake, introduced an exercise regime, and brought my weight back to normal. Similarly, with issues of getting older, such as the possibility of dementia, I reckon that keeping mentally active, learning new things, firing up new pathways, is the self-help solution, and with hypnotism, the defence is a strong mind and a profound unwillingness to be hoodwinked by any evil geniuses out there. But I’m not silly, and I’ve always known that I’m at least partially kidding myself, and that I can’t fully bullet-proof myself against cancer, dementia, or even mind control. So maybe I should subject myself to the above-mentioned susceptibility scales, and face the facts.

For the susceptible ones, there are certainly medical benefits in the application of hypnosis, in relieving stress, in pain management, and in preparing patients for, and managing them through, surgery. Attempts have made to use hypnotherapy, and to analyse its success, in weight loss programs and in treating addictive behaviour, with mixed results.

But what of that worst-case scenario, where the susceptible are manipulated into performing dastardly deeds? Dunning’s conclusions on this seemed reassuring. The susceptible clients certainly reported losing their memory of actions performed under hypnosis, and they certainly did perform those actions, or ‘see’ things they were commanded to see, but, according to Dunning ‘only so long as they were consciously willing to go along.’ He ends with a recommendation to try hypnotism, saying ‘you can’t lose control’ and that ‘you might just have a really wild ride’, two statements that might seem to contradict each other.

But these reassurances were all blown away by Derren Brown’s program on hypnotism, one of a series he presented on how the human mind can be made to believe things and do things that aren’t always in its best interest. Brown is a thorough-going sceptic and an atheist, and so on the side of the angels. I was primed for a dose of debunking, but, frankly, was left with far more questions than answers. I have to rely on my memory here, but the program began with some references to Sirhan Sirhan, the killer of Robert Kennedy in the sixties. Sirhan’s lack of remorse over the years has told against him at parole board hearings and the like, but since he bizarrely claims to have no recollection of the act, his lack of remorse would in that sense be consistent. Without going into too much detail about the assassination (conspiracy theories abound), Brown plants in our minds the germ of an idea that this could’ve been a mind-control event. The rest of the program involves an elaborate set-up in which Brown hypnotises a susceptible subject into ‘killing’ Stephen Fry, with a gun, while Fry is performing onstage, and the hypnotised subject is in the audience. Fry, who’s in on the act, plays dead, and the audience – well, here’s where my memory fails me. I seem to remember shock and confusion, but I don’t recall any heroes grappling with the gunman, or reacting as the gunman stood up and took aim at Fry. Maybe that’s just the behaviour of well-primed security guards. After all, shooting someone when they’re onstage, though theatrical, is hardly a real-life scenario. In fact I don’t recall it ever having happened.

More importantly – in fact far more importantly – the scenario, if we’re to believe it, completely disproves Dunning’s claim that you can’t be persuaded to do something entirely uncharacteristic when under hypnosis. The young man who ‘shoots’ Fry seems to be a pleasant, gentle soul. In an after-event interview with Brown, at which Fry is also present, he has no recollection of firing the gun, though he does remember attending the show (if my memory serves me correctly).

I was really shaken by all this. I tried to wriggle out of the conclusions. Obviously the shooter was using a toy gun – or maybe a real gun with blank bullets. Could it be that he wouldn’t have gone through with it had it been a real gun? That didn’t make sense, really – the gun was in its own case, and looked real enough to me, inexpert though I am (I truly loathe guns). It was no water-pistol or cap-gun. But maybe the whole set-up was a sham? In this and in other Brown shows I found it incredible that subjects could be so easily put into a hypnotised state. In fact ‘ludicrous’ is the word that springs to mind. There’s a part of me – quite a big part in fact – that just wants to dismiss the whole thing as arrant bullshit, a kind of sick joke. How can the human brain, the most complex 1300g entity on the planet, be so easily hijacked?

Well, apparently it can. One has to accept the evidence, however reluctantly. And of course it’s not accurate to say that the entire brain is hijacked. Or rather, just as you don’t have to have complete control of every aspect of a plane in order to hijack it, you just have to control the pilot, so hypnotism must involve control of some kind of consciousness-controller in the brain. Something like what we describe as ‘the self’, no less. A big problem, especially when some psychologists, neurologists and philosophers deny the very existence of the self.

But I’ll leave an exploration of how hypnotism works from a neurophysiological perspective for another post. I suspect, though, that not much progress has been made in that area. Meanwhile, I’m left with a much greater concern about hypnotism than ever before. As if there wasn’t enough to worry about!

Written by stewart henderson

April 20, 2013 at 9:32 am

revisiting that old chestnut, the separate spheres of science and religion

leave a comment »

In any case, a most excellent book

In any case, a most excellent book

It always surprises me when I hear scientists who are otherwise extremely stimulating and admirable taking up the old S J Gouldian position on religion. I have in mind here V S Ramachandran, in his recent book The tell-tale brain:

When I make remarks of this nature about God… I do not wish to imply that God doesn’t exist; the fact that some patients develop such delusions doesn’t disprove God – certainly not the abstract God of Spinoza or Shankara [an Indian mystic philosopher of the eighth century]. Science has to remain silent on such matters. I would argue, like Erwin Schrodinger and Stephen Jay Gould, that science and religion (in the nondoctrinaire philosophical sense) belong to different realms of discourse and one cannot negate the other.

Mmmm. Always a bit of a problem when science is told what it ‘has to’ do. Or is it just me that doesn’t like being told that? I do, though, take Ramachandran’s point that science has nothing directly to say about the supernatural, the realm of the ‘non-evidential’. To say that there’s no evidence for the non-evidential seems rather beside the point. And yet…

The whole point of religion is supernatural agency, and this, it seems to me, involves these other-worldly agents acting in this world; answering prayers, performing miracles and so forth. After all, a god who does nothing is, arguably, not worth worshipping. Worshipping a god is, it seems to me, a quid pro quo sort of thing, though this is rarely made explicit. We expect something from these gods, they made us for a purpose, hence their obsession with us, their fatal flaw, it might seem. I’m talking about monotheistic gods of course, the ones without siblings or goddy communities to distract them from being our eternal lords and masters.

How these issues can be claimed to belong to different orders of discourse is beyond me. To me, as I’ve written, science is born of relentless questioning, with two aspects, curiosity and scepticism. And one of the biggest questions, obviously, is – how did we come to be here? It’s a question that science relentlessly explores – the origin of life, the origin of matter, the origin of universal laws and forces. It’s also a question that religion, particularly monotheistic religion, purports to answer. The answer being, a deity is responsible. A deity far too complex and ineffable for us to be capable of understanding or even beginning to explore.

I don’t see any difficulty in treating this as a theory, or more accurately a hypothesis, like any other, to be treated with the same sceptico-curious questioning as any other claim about our world and our experience.

I note that Ramachandran isolates religion ‘in the nondoctrinaire philosophical sense’ as the only religious ‘type’ that’s beyond the realm of scientific inquiry. Or perhaps he means beyond scientific proof, as I’m sure he agrees that the areas and pathways of the brain associated with religious or spiritual feeling are well worth probing. In fact, quite a bit of headway has been made in recent years in neurophysiology and in experimental psychology, in teasing out the forces contributing to religious belief. So such belief does fall within the scientific ‘realm of discourse’ or purview. When I first encountered the concept of a god in Sunday School as a seven or eight year old, the first thing that came to me was a whole heap of questions. Questions in which, as always, you can’t disentangle curiosity from scepticism. Who? What? Where? Says who? Can you really be serious? What are you getting out of this? How can this idea be possible? Where did it come from? Why is he male? What do you mean that he’s our father – isn’t one more than enough?

I believe these to be scientific questions, but then maybe I have a broader definition of science than most. I certainly hope so. And maybe these questions can’t negate gods, or belief in them, but they can certainly make it hot for this whole bizarro world of ‘faith’.

The other side of Ramachandran’s argument, though, I certainly agree with. Whatever religious discourse is, it has no hope of negating science.

Written by stewart henderson

January 31, 2013 at 6:08 pm