an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Posts Tagged ‘chromosome 11

epigenetics and imprinting 5: mouse experiments and chromosome 11

leave a comment »

something new, since Carey’s book was published – a healthy mouse, from entirely maternal DNA, with healthy offspring – and in 2018 a healthy bi-paternal mouse was created

 

So we were looking at how we – mammals amongst others – are engaged in a kind of battle for the best way to ensure our genetic survival into the future, beyond our insignificant little selves. This battle begins in the very early phase of life, as zygotes multiply to form a blastocyst. 

Remember from my last post on this topic, the male mammal is interested in the offspring above all else. He’s even happy to sacrifice the mother for the sake of the child – after all there’s plenty more fish in the sea (or mammals in the – you know what I mean). The female, on the other hand, is more interested in self-preservation than in this pregnancy. She wants more than one chance to pass on her genes.

So, by the blastocyst stage, cells have differentiated into those that will form the placenta and those that will form the embryo itself. Experiments on mice have helped to elucidate this male-female genetic struggle. Mouse zygotes were created which contained only paternal DNA and only maternal DNA. These different zygotes were implanted into the uterus of mice. As expected, the zygotes didn’t develop into living mice – it takes DNA from both sexes for that. The zygotes did develop though, but with serious abnormalities, which differed depending on whether they were ‘male’ or ‘female’. In those in which the chromosomes came from the mother, the placental tissues were particularly underdeveloped. For those with the male chromosomes, the embryo was in a bad way, but the placental tissues not so much.

In short, these and other experiments suggested that the male chromosomes favoured placental development while the female chromosomes favoured the embryo. Thus, the male chromosomes are ‘aiming’ to build up the placenta to drain as many nutrients as possible from the mother and feed them into the foetus. The female chromosomes have the opposite aim, resulting in a ‘fine balance’ in the best scenarios.

Further work in this area has identified particular chromosomes responsible for these developments, and some of the epigenetic factors involved. For example, mouse chromosome 11 is important for offspring development. When the offspring inherits a copy of chromosome 11 from each parent, the offspring will be of normal size. If both copies come from the mother it will abnormally small, while if both come from the father it will be abnormally large. These experiments were carried out on inbred mice with identical DNA. Nessa Carey summarises:

If you sequenced both copies of chromosome 11 in any of the three types of offspring, they would be exactly the same. They would contain the same millions of A, C, G and T base-pairs, in the same order. But the two copies of chromosome 11 do clearly behave differently at a functional level, as shown by the different sizes of the different types of mice. Therefore there must be epigenetic differences between the maternal and paternal copies of chromosome 11.

So this means that chromosome 11 is an imprinted chromosome – or at least certain sections of it. This is the same for other chromosomes, some of which aren’t imprinted at all. But how is it done? That’s the complex biochemical stuff, which I’ll try to elucidate in the next post on this topic.

Footnote: the photo above shows a bi-maternal mouse with healthy offspring, and further work in deleting imprinted genetic regions has allowed researchers to create healthy bi-paternal mice too. There’s a fascinating account of it here.

References:

Nessa Carey, The epigenetics revolution, 2011

https://www.the-scientist.com/news-opinion/first-mouse-embryos-made-from-two-fathers-64921

Written by stewart henderson

January 19, 2020 at 12:26 pm