a bonobo humanity?

‘Rise above yourself and grasp the world’ Archimedes – attribution

Posts Tagged ‘electric vehicles

a wee post on developments in battery technology for EVs

leave a comment »

And now for something completely different.

An article in a recent issue of The Economist (August 26- September 1 2023) , which I read mainly for the political and technological stuff, as economics is largely gibberish to me, deals with the development of solid state Li-ion batteries for EVs, and their scaling up for a new generation of such vehicles. So this piece is for educating myself, or trying to, on solid state electrolysis and how such batteries will, maybe, hasten the end of the infernal combustion engine for families and hoons everywhere.

As the article points out, there are three main issues which might be preventing the greater uptake of EVs – range, cost and charging times. All of which can be fixed with better-performing and cheaper batteries. Easy-peasy.

Current or ‘traditional’ lithium-ion batteries took quite a while to go from the drawing-board to useful application:

Although they were invented in the late 1970s, Li-ion batteries… were not fully commercialised until the early 1990s, at first for portable electronic devices, such as laptop computers and cell phones, and then as bigger versions that could be used to power a new generation of EVs.

The solid state version of these batteries, which are potentially safer, longer lasting and more efficient, have been promised for some time, but they’re now on the point of commercial reality, or just about. But what does ‘solid state’ mean, and why aren’t current Li-ion batteries solid – and what makes them liquid?

It’s all about the electrolyte, the key component of all batteries:

… electrolytes are used in a liquid form for good reason. Ions are charged particles, and are created at one of the batteries electrodes, the cathode, when the cell is charged, causing electrons to be stripped from lithium atoms. The electrolyte provides a medium through which the ions migrate to a second electrode, the anode. As they do so, the ions pass through a porous separator that keeps the electrodes apart to prevent a short-circuit. The electrons created at the cathode, meanwhile, travel towards the anode along the wires of the external charging circuit. Ions and electrons reunite at the anode where they are stored. When the battery discharges, the process reverses, with electrons in the circuit powering a device – which in the case of an EV is its electric motor.

This explanation, from the article referenced below, requires some explaining, at least for me. So, from the beginning, electro-lysis (coined by Faraday) means cutting, or splitting, by means of electricity. Stripping electrons (negatively charged) from atoms, thus ionising them (positive charge). The level of electric pressure, or voltage, required for electrolysis to occur is called the decomposition potential. 

So the question I ask myself, in my non-scientific way, is – can electrolysis be applied to any element? Presumably, with a Li-ion battery, it’s applied to lithium, which is an ‘alkali metal’. Interestingly, according to Wikipedia,

Australia has one of the biggest lithium reserves and is the biggest producer of lithium by weight, with most of its production coming from mines in Western Australia.

So, a quick look-up tells me that electrolysis can be and is applied to many elements and compounds and substances, including water (for the production of hydrogen fuel, though that’s a potentially fraught process). Anyway, it seems that, though the electrolyte in a Li-ion battery is liquid ‘for good reason’, I still don’t know what that reason is, though I’m guessing that it’s because the ions can move more readily through liquid to the terminals (cathode and anode). So, ‘the most common electrolyte in lithium batteries is a lithium salt solution such as lithium hexafluorophosphate (LiPF6)’. Polymer gels are also used, but the development of a solid state battery has been a kind of holy grail for some time, as this would, or should, reduce flammability and increase voltage, cycling performance, strength and overall lifespan. One of the major hurdles is cost, as companies seek to develop a particular type to scale up. Over the past ten years or so, as it has become clear that EVs will be the future of motoring, the race has been on to produce effective and economic solid state batteries (SSBs). Here’s how Wikipedia puts it:

In 2013, researchers at the University of Colorado Boulder announced the development of a solid-state lithium battery, with a solid composite cathode based on an iron–sulfur chemistry, that promised higher energy capacity compared to already-existing SSBs. In 2017, John Goodenough, the co-inventor of Li-ion batteries, unveiled a solid-state glass battery, using a glass electrolyte and an alkali-metal anode consisting of lithium, sodium or potassium. Later that year, Toyota announced the deepening of its decades-long partnership with Panasonic, including a collaboration on solid-state batteries.

Various solids are being trialled, including ceramics and solid polymers. The US company QuantumScape has teamed with Volkswagen to mass-produce lithium metal batteries, which use metallic lithium as an anode. My mind is glazing over as I try to understand the technology involved, but here’a a quote from QuantumScape’s website:

QuantumScape’s technology platform is designed to pair with a variety of cathode chemistries — with the potential to significantly improve the energy densities of today’s Nickel Manganese Cobalt (NMC) and Lithium Iron Phosphate (LFP)-based battery cells. This capability enables optimization for diverse energy storage applications and gives our platform the flexibility to benefit from future cathode chemistry advancements.

They’re hoping for commercial availablity of their product by the end of next year, apparently. The same webpage tries to answer a number of FAQs, such as the benefits of solid state lithium, re weight and volume, the effects on EV range, the nature of the separator material, and co-existence with other current and emerging technologies.

I think that’ll do for my amateur analysis, for now, but I do hope to keep an eye on this technology, and the rise of EVs and surrounding infrastructure going forward.

References

‘The race to build a superbattery’,  The Economist, August 26 – September 1 2023

https://en.wikipedia.org/wiki/Electrolysis

https://en.wikipedia.org/wiki/Lithium_mining_in_Australia

What Is Battery Electrolyte and How Does It Work?

https://en.wikipedia.org/wiki/Solid-state_battery

https://www.quantumscape.com/technology/

Written by stewart henderson

October 2, 2023 at 3:06 pm

electrification, copper, water and South Australia

leave a comment »

we shall see..

So, according to the South Australian government, ‘SA contains 69% of Australia’s… demonstrated resources of copper’, which is an essential element for the future of electrification worldwide, so we’re sitting on a copper goldmine, or a golden coppermine, and what is it with gold anyway?

A provocative article by Michael McGuire was published in the Adelaide Advertiser’s Weekend magazine, for June 17-18, highlighting prospective developments regarding mining copper in Kapunda and environs, a region that, in the 19th century, made South Australia ‘the biggest producer of copper in the British Empire’, until the copper market crashed in 1870s, and the mines were abandoned. The article also highlighted BHP’s interest in this suddenly in-demand element, and the problematic past relationship between the mining giant (in little Australia’s terms) and the SA government.

I recall some months ago conversing with a friend at a culinary gathering, and the subject turned to renewable energy and EVs. He was negative about their global uptake, and when I pressed him on why, he only had one word to say – copper. I was a bit miffed about his pouring cold water on my optimism, but it led me to writing a piece on copper here back in October 2022. The last words of that piece make for a good lead-in:

Australia, by the way, has the second largest copper reserves in the world (a long way behind Chile), and this could presumably be turned to our benefit. I’m sure a lot of magnates are magnetised by the thought.

So. As we know, EVs require about four times as much copper as ICE vehicles. Wind farms, solar panels and charging stations are also heavily reliant on copper. According to McGuire’s article:

Electric car sales increased by 60% last year to pass 10 million globally for the first time, making up about 14% of the market. Some are predicting as many as 60% of all new car sales will be electric by 2030 and close to 100% by 2050…

And some are not. But there’s no doubt that EVs are on the up and up, with Australia being shamefully behindhand, largely due to our lack of manufacturing here, and our distance from other EV manufacturers, not to mention government ‘hesitancy’.

Making copper more available here will clearly make a difference to all that. But one problem that needs to be solved is water. Mining and smelting copper requires lots of it. BHP has been tapping into the Great Artesian Basin, but this isn’t environmentally sustainable, so the company has been discussing a new initiative with the state government. The proposed Northern Water Supply Project includes the building of a desalination plant in Whyalla, and a pipeline to pump water to Olympic Dam and other sites in the state’s far north, a hugely expensive project (the required environmental impact statement alone is costed at $230 million) which the SA government is likely to provide funding for only if BHP, with which it has had a more than troubled relationship, chips in a substantial amount.

BHP’s Olympic Dam, over 500 kms north of Adelaide, is a resource centre for copper, gold and uranium, which, of course, is now being touted as a sustainable decarbonisation hub. And there are other projects and opportunities, involving state and private enterprise. As well as the water facility in Whyalla, there are plans for a $600 million hydrogen plant, and for upgrading Whyalla’s steel plant, and exploiting the region’s undeveloped iron ore resources. SA is already leading the country in its abundance of solar and wind power, so, according to McGuire,

.. the theory is, South Australia becomes a centre for green copper and green steel production at the very time the world is crying out for such products. As an aside, the cheaper energy available from hydrogen, sun and wind also attracts a whole heap of other businesses to South Australia.

Again, all of this, especially the hydrogen, will require a large volume of available water, meaning that various projects will have to come together to make the projected boom happen. One person who seems bullish about it all is BHP’s chief operating officer, who points out that though the state has 70% of Australia’s copper resources, it’s currently producing less than 30% of the country’s mined copper. Basto was previously in charge of BHP’s Escondida mine in Chile, the largest copper mine on the planet, and has headed the company’s iron ore operation in Western Australia. Currently he is working on developments from BHP’s $9.6 billion acquisition of Oz Minerals, which has successfully operated copper mines in the far north – at Carrapateena and Prominent Hill. These mines, along with Olympic Dam, and Oak Dam (a new and apparently very  promising development), ‘all lie within a geological zone known as the Gawler Craton’, which Basto predicts, or hopes, will become a lucrative mining hub in the not too distant future. Australia, as he and others point out, is a ‘stable jurisdiction’ for mining, compared to other resource-rich regions in South America and Africa.

This is a real issue. Historically, locals have been worked more or less to death, in Columbian silver mines for example, as described in Gaia Vince’s Adventures in the Anthropocene. And it’s still happening. Wikipedia provides a horrific list of mining disasters over just the last 20 years in the largely impoverished Democratic Republic of the Congo, mostly from artisanal or small-scale ‘independent’ mining. Which brings us back to Kapunda, and restoring its copper reputation, with a difference. A wife and husband team, Philippa and Leon Faulkner have formed a company, EnviroCopper, based in Kapunda, which will, eventually, re-open the mine using a process called ‘in situ recovery’. To quote from McGuire’s article:

… this will not be a regular mine. No big holes. No big explosions. Just some white pipes poking out of the ground. Which, with the town of Kapunda right there, is a definite advantage.

The process, used for uranium mining further north, involves pumping an acidic solution ‘through the porous rocks, which dissolves the copper, and then the liquid is pumped back up to the surface through bores or wells, and the metal is recovered’. It is much more enviro-friendly and low impact than the old 19th century form of mine, though it may still be a pipe dream at present. The next year or so will be key to whether government, big mining and various smaller enterprising players can get it all together to take the state further down the road of green energy production and utilisation. It will be most interesting…

References

‘The next Big Thing’, by Michael McGuire, The Advertiser SA Weekend, June 17-18 2023

our electric future – is copper a problem?

https://www.mining-technology.com/marketdata/ten-largest-coppers-mines/

Gaia Vince, Adventures in the Anthropocene, 2014

https://en.wikipedia.org/wiki/List_of_mining_disasters_in_the_Democratic_Republic_of_the_Congo#:~:text=September%2011%2C%202020%20–%20artisanal%20gold,12%20killed%20in%20a%20landslide.

 

Written by stewart henderson

June 20, 2023 at 11:23 pm

our electric future – is copper a problem?

with one comment

So I recently had a conversation with someone who told me that electric vehicles were not the future because – copper. I must admit that I immediately got tetchy, even though I knew nothing about the ‘copper problem’, or if there actually was one. My interlocutor wasn’t anti-green in any way, he was more into electric bikes, tiny-teeny cars, and people staying put – not travelling anywhere, or not far at least. Perhaps he imagined that ‘virtual travel’ would replace real travel, reducing our environmental footprint substantially.

It has struck me that his rather extreme view of the future was an example of the perfect being the enemy of the good. I’m all for electric bikes, car-sharing and even a reduction in travelling, within limits (in fact migration has been associated with the human species since it came into being, just as it has with butterflies, whales and countless other species) but although I note with a certain disdain that family cars are getting bigger just as families are getting smaller (in our WEIRD world), I have no faith whatever that those family cars are going to be abandoned in the foreseeable.

But getting back to copper, the issue, which I admit to having been blind to, is that with a full-on tilt to electrification, copper, the world’s most efficient and cheaply available electric conductor, might suddenly become scarce, putting us in a spot of bother. But will it? That depends on who you talk to. Somehow the question brings back to mind David Deutsch’s The beginning of infinity, a super-optimistic account of human ingenuity. Not enough copper? No problem we can’t engineer our way out of…

Currently demand for copper is outstripping supply, but will this be a long term problem? CNBC made a video recently – ‘Why a looming copper shortage has big consequences for the green economy’ – the title of which, it seems to me, is more pessimistic than the content. Copper has been an ultra-useful metal for us humans, literally for millennia. But its high conductivity – second only to silver, which presumably is more rare and so far more expensive – has made it the go-to metal for our modern world of electric appliances. It also has the benefit of being highly recyclable, so it can be ripped out of end-of-life buildings, vehicles and anything else and re-used. But EVs use about four times more copper than infernal combustion vehicles, and wind turbines as well as solar panels require lots of the stuff, as do EV charging stations, and there aren’t too many new copper mines operating, so…

From what I can gather online, though, there’s no need for panic. Apparently, we’re currently utilising some 12% of what we know to be available for mining. The available stuff is the cheap stuff, and until now we’ve not really needed much more. But new techniques of separating copper from its principal ore, chalcopyrite, look promising, and markets appear to be upbeat – get into copper, it’ll make your fortune!

There’s also the fact that, though things are changing, the uptake of EVs is still relatively slow. People are generally talking about crunch time coming in that vaguely defined era, ‘the future’. High copper demand, low supply seems to be the mantra, and all the talk is about investment and risk, largely meaningless stuff to impoverished observers like me. In more recent times, copper prices have dropped due to ‘a manufacturing recession caused by the energy crisis’. I didn’t know about either of these phenomena. Why wasn’t I told? Mining.com has this to say about the current situation, FWIW:

Copper prices typically react to the ebb and flow of demand in China, which accounts for half of global consumption estimated at around 25 million tonnes this year. But this time the focus is on Europe, accounting for 15% to 20% of the global demand for copper used in power and construction. The region is facing surging gas and power prices after energy supply cuts, which Russia blames on Western sanctions over the Ukraine conflict. The European Union has made proposals to impose mandatory targets on member countries to cut power consumption.

Make of this what you will, I have quoted the most coherent passage in a mire of economics-speak. Presumably, supply is affected by the volatile conditions created by Mr Pudding’s testosterone. So everybody is saying that copper is falling in price, and this is apparently bad. Here’s another quote to make sense of:

Due to closing smelters and falling demand from manufacturers, an excess of copper stockpiles has been building up in a number of Shanghai and London warehouses, also contributing to downward pressure on prices.

Meaning copper isn’t worth much currently, though this is probably a temporary thing. Glad I haven’t anything to invest.

I think the bottom line in all this is don’t worry, be happy. Copper availability for the energy transition is subject to so many incoherent fluctuations that it’s not worth worrying about for the average pundit. Here in Australia the issues are – you can solarise your home no worries. Buying an EV is another matter, since none are being manufactured here, so governments need to be pressured to create conditions for a manufacturing base, and the infrastructure to support the EV world. Storage and battery technology need to be supported and subsidised, as is in fact starting to happen, with a more supportive federal government, and state Labor governments here in South Australia, and in Western Australia, Queensland and Victoria.

So, to conclude, having read through quite a few websites dealing with copper as the go-to metal for the transition to green energy (some links below), I haven’t found too much pessimism or concern about Dr Copper’s availability, though there are clearly vested interests in some cases. Australia, by the way, has the second largest copper reserves in the world (a long way behind Chile), and this could presumably be turned to our benefit. I’m sure a lot of magnates are magnetised by the thought.

References

https://oilprice.com/Energy/Energy-General/A-Copper-Crisis-Threatens-The-Energy-Transition.html

https://intellinews.com/ev-market-may-create-copper-deficit-219864/

Europe’s energy crisis to drop copper price to two-year low

Driving the green revolution: The use of copper in EVs

Written by stewart henderson

October 26, 2022 at 10:09 pm

resetting the electrical agenda

leave a comment »

the all-electric la jamais contente, first car to break the 100 kph barrier, in 1899

In his book Clearing the air, Tim Smedley reminds us of the terrible errors we made in abandoning electric vehicles in the early 20th century. Smedley’s focus was on air pollution, and how the problem was exacerbated, and in fact largely caused, by emissions from car exhausts in increasingly car-dependent cities like Beijing, Delhi, Los Angeles and London. In the process he briefly mentioned the electric tram systems that were scrapped in so many cities worldwide in favour of the infernal combustion engine. It’s a story I’ve heard before of course, but it really is worth taking a deeper dive into the mess of mistakes we made back then, and the lessons we need to learn. 

A major lesson, unsurprisingly, is to be suspicious of vested interests. Today, the fossil fuel industry is still active in denying the facts about global warming and minimising the impact of air pollution on our health. Solar and wind power, and the rise of the EV industry – which, unfortunately, doesn’t exist in Australia – are still subject to ridiculous attacks by the heavily subsidised fossil fuel giants, though at least their employees don’t go around smashing wind turbines and solar panels. The website Car and Driver tells a ‘funny story’ about the very earliest days of EVs: 

… Robert Davidson of Aberdeen, built a prototype electric locomotive in 1837. A bigger, better version, demonstrated in 1841, could go 1.5 miles at 4 mph towing six tons. Then it needed new batteries. This impressive performance so alarmed railway workers (who saw it as a threat to their jobs tending steam engines) that they destroyed Davidson’s devil machine, which he’d named Galvani.

If only this achievement by Davidson, before the days of rechargeable batteries, had been greeted with more excitement and wonder. But by the time rechargeable batteries were introduced in the 1860s, steam locomotives were an established and indeed revolutionary form of transport. They began to be challenged, though, in the 1880s and 90s as battery technology, and other features such as lightweight construction materials and pneumatic tyres, started to make electric transport a more promising investment. What followed, of course, with the development of and continual improvements to the internal combustion engine in the 1870s and 80s, first using gas and then petrol – the 1870s into the 90s and beyond was a period of intense innovation for vehicular transport – was a serious and nasty battle for control of the future of private road transport. Electricity wasn’t widely available in the early twentieth century, but rich industrialists were able to create a network of filling stations, which, combined with the wider availability of cheap oil, and the mass production and marketing capabilities of industrialists like Henry Ford – who had earlier considered electric vehicles the best future option – made petrol-driven vehicles the eventual winner, in the short term. Of course, little thought was given in those days to fuel emissions. A US website describes a likely turning point: 

… it was Henry Ford’s mass-produced Model T that dealt a blow to the electric car. Introduced in 1908, the Model T made gasoline [petrol]-powered cars widely available and affordable. By 1912, the gasoline car cost only $650, while an electric roadster sold for $1,750. That same year, Charles Kettering introduced the electric starter, eliminating the need for the hand crank and giving rise to more gasoline-powered vehicle sales.

Electrically-powered vehicles quickly became ‘quaint’ and unfashionable, leading to to the trashing of electric trams worldwide. 

The high point of the internal combustion engine may not have arrived yet, as numbers continue to climb. Some appear to be addicted to the noise they make (I hear them roaring by nearly every night!). But surely their days are numbered. What shocks me, frankly, is how slow the public is to abandon them, when the fossil fuel industry is so clearly in retreat, and when EVs are becoming so ‘cool’. Of course conservative governments spend a fortune in subsidies to the fossil fuel industry –  Australia’s government  provided over $10 billion in the 2020-21 financial year, and the industry in its turn has given very generously to the government (over $1.5 million in FY2020, according to the Market Forces website).

But Australia is an outlier, with one of the worst climate policies in the WEIRD world. There will be a federal election here soon, and a change of government is very much on the cards, but the current labor opposition appears afraid to unveil a climate policy before the election. The move towards electrification of vehicles in many European countries, in China and elsewhere, will eventually have a knock-on effect here, but the immediate future doesn’t look promising. EV sales have risen markedly in the past twelve months, but from a very low base, with battery and hybrids rising to 1.95% of market share – still a paltry amount (compare Norway with 54% EVs in 2020). Interestingly, Japan is another WEIRD country that is lagging behind. China continues to be the world leader in terms of sheer numbers. 

The countries that will lead the field of course, will be those that invest in infrastructure for the transition. Our current government announced an infrastructure plan at the beginning of the year, but with little detail. There are issues, for example, about the type of charging infrastructure to fund, though fast-charging DC seems most likely.

In general, I’ve become pessimistic about Australians switching en masse to EVs over the next ten years or so – I’ve read too many ‘just around the corner’ articles with too little actual change in the past five years. But perhaps a new government with a solid, detailed plan will emerge in the near future, leading to a burst of new investment…. 

References

Tim Smedley, Clearing the air, 2019

https://www.caranddriver.com/features/g15378765/worth-the-watt-a-brief-history-of-the-electric-car-1830-to-present/

https://www.energy.gov/articles/history-electric-car

https://www.marketforces.org.au/politicaldonations2021/

 

Written by stewart henderson

February 27, 2022 at 1:07 pm

electric vehicles in Australia – how bad/good is it?

leave a comment »

Hyundai Ionique electric – top marks from the Green Vehicle Guide

 

Following on from the interview with Prof Mark Howden that I reported on recently, I’m wondering what the situation is for anyone wanting to buy an EV in Australia today. What’s on the market, what are the prices, how is the infrastructure, and what if, like me, you might want just to hire an EV occasionally rather than own one?

Inspired by Britain’s Fully Charged show, especially the new episodes entitled Maddie Goes Electric, I’m going to do a little research on what I fully expect to be the bleak scenario of EV availability and cost in Australia. Clearly, we’re well behind the UK in terms of the advance towards EV. One of Maddie’s first steps, for example, in researching EVs was to go to a place called the Electric Vehicle Experience Centre (EVEC), for a first dip into this new world. I cheekily did a net search for Australia’s EVEC, but I didn’t come up completely empty, in that we do have an Australian Electric Vehicle Association (AEVA) and an Electric Vehicle Council (EVC), which I’ll have to investigate further. Maddie also looked up UK’s Green Car Guide, and I’ve just learned that Australia has a corresponding Green Vehicle Guide. I need to excuse my ignorance up to this point – I don’t even own a car, and haven’t for years, and I’m not in the market for one, being chronically poor, and not having space for one where I live, not even in terms of off-street parking, but I occasionally hire a car for holidays and would love to be able to do so with an EV. We shall see.

So the Green Vehicle Guide ranks the recently-released all-electric Hyundai Ioniq as the best-performing green vehicle on the Australian market (that’s performance, not sales, where it seems to be nowhere, probably because it’s so new). It’s priced at somewhere between about $35,000 and $50,000. Here’s what a car sales site has to say:

The arrival of the Hyundai IONIQ five-door hatchback signals Australia is finally setting out on its evolution to an electrified automotive society. The IONIQ is the cheapest battery-electric vehicle on sale in Australia and that’s important in itself. But it’s also significant that Australia’s third biggest vehicle retailer has committed to this course when most majors aren’t even close to signing off such a vehicle. In fact, just to underline Hyundai’s push into green motoring, the IONIQ isn’t just a car; it’s a whole range with three drivetrains – hybrid, plug-in and EV.

I need to find out the precise difference between a hybrid and a plug-in… It’s steep learning curve time.

Anyway, some reporting suggests that Australia’s bleak EV situation is turning around. This Guardian article from August 2019 predicts that EV sales are set to rise significantly, regardless of government inaction:

Modelling suggests the electric vehicle share of new car sales in Australia will rise from about 0.34% today to 8% in 2025. It is predicted to then leap to 27% of new car sales in 2030 and 50% in 2035 as prices of electric car technology fall.

2025 isn’t far off, so I’m a bit skeptical of these figures. Nevertheless, I’ll be monitoring the Australian EV scene more closely from now on.

References

https://www.iea.org/policies/7885-a-national-strategy-for-electric-vehicles

https://www.theguardian.com/environment/2019/aug/14/half-of-all-new-cars-sold-in-australia-by-2035-will-be-electric-forecast

https://www.greenvehicleguide.gov.au/

Maddie Goes Electric, Episode 1: Choosing your electric car (A beginner’s guide) | Fully Charged

Written by stewart henderson

January 19, 2020 at 5:14 pm

the SUV abomination, or when will we reach peak SUV?

leave a comment »

the anti-SUV – a Tesla Model X, landing in a field somewhere

I was amused by a recent rant from Robert Llewellyn of the highly-recommended Fully Charged vodcasts, regarding the rise and rise of petrol and diesel-fuelled SUV sales in this period of carbon emission concern and climate change. So I have to share an anecdote.

As a young perennially poor person in the seventies I hitch-hiked quite a lot. Hitch-hiking is barely a thing nowadays, and I suspect the hitch-hiking experience I’m about to describe, sometime in the eighties, was my last. It often comes back to annoy me. 

I was picked up by an overweight middle-aged woman with a blaze of dyed blond hair and a dire Aussie accent, in an SUV. Obviously, it was a kind gesture. 

This was my first experience of being in an SUV, and I’ve had very few since. It felt strange to be looking down at other cars on the road. I wondered if this created psychological effects. The woman, I think, tried to elicit conversation but I’m very shy with strangers and pretty hopeless at small talk. So she made her own, which soon developed into a rant against ‘small cars’, which she seemed to regard as death traps and a form of road litter. Certainly there was a strange, disproportionate rage that got to me, as I nodded with an air of non-committal sagacity.

At that point in my life I’d never driven a car – I didn’t get my licence until my late thirties – but I knew the kind of car I wanted to drive, and it was the precise opposite of an SUV, a ridiculous vehicle that was just starting to pollute city streets at the time of this awkward incident. Of course the environment was already a major public issue in the eighties, so I naively thought this woman was on the wrong side of history. The SUV would surely go the way of the dinosaur, in somewhat less than a couple of hundred million years.

But SUV sales are soaring worldwide, in spite of a greater recognition of climate change and anthropogenic global warming due to greenhouse gas emissions. I suppose there’s some excuse for them in Australia, this land of sweeping plains (and sleeping brains), but given our apparent indifference to the EV revolution and the phobia re climate change issues of our federal government, we’re just going to have to put up with these tanks continuing to proliferate in our suburbs. And it’s going on everywhere – there’s currently a huge spike in SUV sales worldwide. I mean, WTF?

So, instead of a pox on SUVs, how about a tax on them? It worked with cigarettes here….

Of course I’m joking. Western governments are more likely to subsidise the manufacture of SUVs than to tax them. This US business website presents in graphic detail the surge in SUV sales:

48% of car sales in the United States last year [2018]’were SUVs, which was the highest percentage worldwide, but other countries are catching up. Large cars can be seen as a status symbol, and sales are rising in countries like China and India where the middle class is growing.

The website cites a study which found that the number of SUVs on the road has increased about six-fold since 2010, and SUVs alone were the second largest contributor to the global increase in carbon emissions during that period. So, I wonder, when will we reach peak SUV?

Written by stewart henderson

January 7, 2020 at 9:05 pm

the battle for and against electric vehicles in Australia, among other things

leave a comment »

Toyota Camry hybrid – hybrids are way outselling pure EVs here, probably due to range anxiety and lack of infrastructure and other support

I’ve probably not been paying sufficient attention, but I’ve just learned that the Federal Energy minister, Josh Frydenberg, is advocating, against the naysayers, for government support to the EV industry. An article today (Jan 22) in The Australian has Frydenberg waxing lyrical about the future of EVs, as possibly being to the transport sector ‘what the iPhone has been to the communication sector’. It’s a battle the future-believers will obviously win. A spokesman for the naysayers, federal Liberal Party MP and AGW-denier Craig Kelly, was just on the gogglebox, mocking the idea of an EV plant in Elizabeth here in South Australia (the town I grew up in), sited in the recently abandoned GM Holden plant. His brilliantly incisive view was that since Holdens failed, a future EV plant was sure to fail too. In other words, Australians weren’t up to making cars, improving their practice, learning from international developments and so forth. Not exactly an Elon Musk attitude.

The electric vehicles for Elizabeth idea is being mooted by the British billionaire Sanjeev Gupta, the ‘man of steel’ with big ideas for Whyalla’s steelworks. Gupta has apparently become something of a specialist in corporates rescues, and he has plans for one of the biggest renewables plants in Australia – solar and storage – at Whyalla. His electric vehicle plans are obviously very preliminary at this stage.

Critics are arguing that EVs are no greener than conventional vehicles. Clearly their arguments are based on the dirty coal that currently produces most of the electricity in the Eastern states. Of course this is a problem, but of course there is a solution, which is gradually being implemented. Kiata wind farm in Western Victoria is one of many small-to medium-scale projects popping up in the Eastern states. Victoria’s Minister for Energy, Environment and Climate Change (an impressive mouthful) Lily D’Ambrosio says ‘we’re making Victoria the national leader in renewable energy’. Them’s fightin words to we South Aussies, but we’re not too worried, we’re way ahead at the moment. So clearly the EV revolution is going hand in hand with the renewable energy movement, and this will no doubt be reflected in infrastructure for charging EVs, sometimes assisted by governments, sometimes in spite of them.

Meanwhile, on the global scale, corporations are slowly shuffling onto the renewables bandwagon. Renew Economy has posted a press release from Bloomberg New Energy Finance, which shows that corporations signed a record volume of power purchase agreements (PPAs) for clean energy in 2017, with the USA shuffling fastest, in spite of, or more likely because of, Trump’s dumbfuckery. The cost-competitiveness of renewables is one of the principal reasons for the uptick, and it looks like 2018 will be another mini-boom year, in spite of obstacles such as reducing or disappearing subsidies, and import tariffs for solar PVs. Anyway, the press release is well worth a read, as it provides a neat sketch of where things are heading in the complex global renewables market.

Getting back to Australia and its sluggish EV market, the naysayers are touting a finding in the Green Vehicle Guide, a federal government website, which suggested that a Tesla powered by a coal-intensive grid emitted more greenhouse gas than a Toyota Corolla. All this is described in a recent SMH article, together with a 2016 report, commissioned by the government, which claimed that cars driven in the Eastern states have a “higher CO2 output than those emitted from the tailpipes of comparative petrol cars”. However, government spokespeople are now admitting that the grid’s emission intensity will continue to fall into the future, and that battery efficiency and EV performance are continuously improving – as is obvious. Still, there’s no sign of subsidies for EVs from this government, or of future penalties for diesel and petrol guzzlers. Meanwhile, the monstrous SUV has become the vehicle of choice for most Australians.

While there are many many honourable exceptions, and so many exciting clean green projects up and running or waiting in the wings, the bulk of Australians aren’t getting the urgency of climate change. CO2 levels are the highest they’ve been in 15 million years (or 3 million, depending on website), and the last two years’ published recordings at Mauna Loa (2015 and 2016) showed increases in atmospheric CO2 of 3PPM for each year, for the first time since recording began in 1960 (when it was under 1PPM). This rate of CO2 growth, apparently increasing – though with variations due largely to ENSO – is phenomenal. There’s always going to be a see-saw in the data, but it’s an ever-rising see-saw. The overall levels of atmospheric CO2 are now well above 400PPM. Climate Central describes these levels as ‘permanent’, as if humans and their effects will be around forever – how short-sighted we all are.

The relationship between atmospheric CO2 and global warming is fiendishly complex, and I’ll try, with no doubt limited success, to tackle it in future posts.

 

Mustn’t forget my update on Trump’s downfall: the Mueller team has very recently interviewed A-G Sessions, who’s been less than honest about his meetings with Russians. Nobody knows what Sessions was asked about in in his lengthy session (haha) with the inquirers, but he’s a key figure when it comes to obstruction of justice as well as conspiracy. Word now is that Trump himself will be questioned within weeks, which could be either the beginning of the end, or just the end. Dare to hope.

 

Written by stewart henderson

January 26, 2018 at 10:26 am

capacitors, supercapacitors and electric vehicles

leave a comment »

from the video ‘what are supercapacitors’

Jacinta: New developments in battery and capacitor technology are enough to make any newbie’s head spin.

Canto: So what’s a supercapacitor? Apart from being a super capacitor?

Jacinta: I don’t know but I need to find out fast because supercapacitors are about to be eclipsed by a new technology developed in Great Britain which they estimate as being   ‘between 1,000 and 10,000-times more effective than current supercapacitors’.

Canto: Shite, they’ll have to think of a new name, or downgrade the others to ‘those devices formerly known as supercapacitors’. But then, I’ll believe this new tech when I see it.

Jacinta: Now now, let’s get on board, superdisruptive technology here we come. Current supercapacitors are called such because they can charge and discharge very quickly over large numbers of cycles, but their storage capacity is limited in comparison to batteries…

Canto: Apparently young Elon Musk predicted some time ago that supercapacitors would provide the next major breakthrough in EVs.

Jacinta: Clever he. But these ultra-high-energy density storage devices, these so-much-more-than-super-supercapacitors, could enable an EV to be charged to a 200 kilometre range in just a few seconds.

Canto: So can you give more detail on the technology?

Jacinta: The development is from a UK technology firm, Augmented Optics, and what I’m reading tells me that it’s all about ‘cross-linked gel electrolytes’ with ultra-high capacitance values which can combine with existing electrodes to create supercapacitors with greater energy storage than existing lithium-ion batteries. So if this technology works out, it will transform not only EVs but mobile devices, and really anything you care to mention, over a range of industries. Though everything I’ve read about this dates back to late last year, or reports on developments from then. Anyway, it’s all about the electrolyte material, which is some kind of highly conductive organic polymer.

Canto: Apparently the first supercapacitors were invented back in 1957. They store energy by means of static charge, and I’m not sure what that means…

Jacinta: We’ll have to do a post on static electricity.

Canto: In any case their energy density hasn’t been competitive with the latest batteries until now.

Jacinta: Yes it’s all been about energy density apparently. That’s one of the main reasons why the infernal combustion engine won out over the electric motor in the early days, and now the energy density race is being run between new-age supercapacitors and batteries.

Canto: So how are supercapacitors used today? I’ve heard that they’re useful in conjunction with regenerative braking, and I’ve also heard that there’s a bus that runs entirely on supercapacitors. How does that work?

Jacinta: Well back in early 2013 Mazda introduced a supercapacitor-based regen braking system in its Mazda 6. To quote more or less from this article by the Society of Automotive Engineers (SAE), kinetic energy from deceleration is converted to electricity by the variable-voltage alternator and transmitted to a supercapacitor, from which it flows through a dc-dc converter to 12-V electrical components.

Canto: Oh right, now I get it…

Jacinta: We’ll have to do posts on alternators, direct current and alternating current. As for your bus story, yes, capabuses, as they’re called, are being used in Shanghai. They use supercapacitors, or ultracapacitors as they’re sometimes called, for onboard power storage, and this usage is likely to spread with the continuous move away from fossil fuels and with developments in supercaps, as I’ve heard them called. Of course, this is a hybrid technology, but I think they’ll be going fully electric soon enough.

Canto: Or not soon enough for a lot of us.

Jacinta: Apparently, with China’s dictators imposing stringent emission standards, electric buses, operating on power lines (we call them trams) became more common. Of course electricity may be generated by coal-fired power stations, and that’s a problem, but this fascinating article looking at the famous Melbourne tram network (run mainly on dirty brown coal) shows that with high occupancy rates the greenhouse footprint per person is way lower than for car users and their passengers. But the capabuses don’t use power lines, though they apparently run on tracks and charge regularly at recharge stops along the way. The technology is being adopted elsewhere too of course.

Canto: So let me return again to basics – what’s the difference between a capacitor and and a super-ultra-whatever-capacitor?

Jacinta: I think the difference is just in the capacitance. I’m inferring that because I’m hearing, on these videos, capacitors being talked about in terms of micro-farads (a farad, remember, being a unit of capacitance), whereas supercapacitors have ‘super capacitance’, i.e more energy storage capability. But I’ve just discovered a neat video which really helps in understanding all this, so I’m going to do a breakdown of it. First, it shows a range of supercapacitors, which look very much like batteries, the largest of which has a capacitance, as shown on the label, of 3000 farads. So, more super than your average capacitor. It also says 2.7 V DC, which I’m sure is also highly relevant. We’re first told that they’re often used in the energy recovery system of vehicles, and that they have a lower energy density (10 to 100 times less than the best Li-ion batteries), but they can deliver 10 to 100 times more power than a Li-ion battery.

Canto: You’ll be explaining that?

Jacinta: Yes, later. Another big difference is in charge-recharge cycles. A good rechargeable battery may manage a thousand charge and recharge cycles, while a supercap can be good for a million. And the narrator even gives a reason, which excites me – it’s because they function by the movement of ions rather than by chemical reactions as batteries do. I’ve seen that in the videos on capacitors, described in our earlier post. A capacitor has to be hooked up to a battery – a power source. So then he uses an analogy to show the difference between power and energy, and I’m hoping it’ll provide me with a long-lasting lightbulb moment. His analogy is a bucket with a hole. The amount of water the bucket can hold – the size of the bucket if you like – equates to the bucket’s energy capacity. The size of the hole determines the amount of power it can release. So with this in mind, a supercar is like a small bucket with a big hole, while a battery is more like a big bucket with a small hole.

Canto: So the key to a supercap is that it can provide a lot of power quickly, by discharging, then it has to be recharged. That might explain their use in those capabuses – I think.

Jacinta: Yes, for regenerative braking, for cordless power tools and for flash cameras, and also for brief peak power supplies. Now I’ve jumped to another video, which inter alia shows how a supercapacitor coin cell is made – I’m quite excited about all this new info I’m assimilating. A parallel plate capacitor is separated by a non-conducting dielectric, and its capacitance is directly proportional to the surface area of the plates and inversely proportional to the distance between them. Its longer life is largely due to the fact that no chemical reaction occurs between the two plates. Supercapacitors have an electrolyte between the plates rather than a dielectric…

Canto: What’s the difference?

Jacinta: A dielectric is an insulating material that causes polarisation in an electric field, but let’s not go into that now. Back to supercapacitors and the first video. It describes one containing two identical carbon-based high surface area electrodes with a paper-based separator between. They’re connected to aluminium current collectors on each side. Between the electrodes, positive and negative ions float in an electrolyte solution. That’s when the cell isn’t charged. In a fully charged cell, the ions attach to the positively and negatively charged electrodes (or terminals) according to the law of attraction. So, our video takes us through the steps of the charge-storage process. First we connect our positive and negative terminals to an energy source. At the negative electrode an electrical field is generated and the electrode becomes negatively charged, attracting positive ions and repelling negative ones. Simultaneously, the opposite is happening at the positive electrode. In each case the ‘counter-ions’ are said to adsorb to the surface of the electrode…

Canto: Adsorption is the adherence of ions – or atoms or molecules – to a surface.

Jacinta: So now there’s a strong electrical field which holds together the electrons from the electrode and the positive ions from the electrolyte. That’s basically where the potential energy is being stored. So now we come to the discharge part, where we remove electrons through the external surface, at the electrode-electrolyte interface we would have an excess of positive ions, therefore a positive ion is repelled in order to return the interface to a state of charge neutrality – that is, the negative charge and the positive charge are balanced. So to summarise from the video, supercapacitors aren’t a substitute for batteries. They’re suited to different applications, applications requiring high power, with moderate to low energy requirements (in cranes and lifts, for example). They can also be used as voltage support for high-energy devices, such as fuel cells and batteries.

Canto: What’s a fuel cell? Will we do a post on that?

Jacinta: Probably. The video mentions that Honda has used a bank of ultra capacitors in their FCX fuel-cell vehicle to protect the fuel cell (whatever that is) from rapid voltage fluctuations. The reliability of supercapacitors makes them particularly useful in applications that are described as maintenance-free, such as space travel and wind turbines. Mazda also uses them to capture waste energy in their i-Eloop energy recovery system as used on the Mazda 6 and the Mazda 3, which sounds like something worth investigating.

References (videos can be accessed from the links above)

http://www.hybridcars.com/supercapacitor-breakthrough-allows-electric-vehicle-charging-in-seconds/

https://en.wikipedia.org/wiki/Supercapacitor

http://www.power-technology.com/features/featureelectric-vehicles-putting-the-super-in-supercapacitor-5714209/

http://articles.sae.org/11845/

https://www.ptua.org.au/myths/tram-emissions/

http://www.europlat.org/capabus-the-finest-advancement-for-electric-buses.htm

Written by stewart henderson

September 5, 2017 at 10:08 am

electric vehicles in Australia, a sad indictment

leave a comment »

Toyota Prius

I must say, as a lay person with very little previous understanding of how batteries, photovoltaics or even electricity works, I’m finding the ‘Fully Charged’ and other online videos quite addictive, if incomprehensible in parts, though one thing that’s easy enough to comprehend is that transitional, disruptive technologies that dispense with fossil fuels are being taken up worldwide at an accelerating rate, and that Australia is falling way behind in this, especially at a governmental level, with South Australia being something of an exception. Of course the variation everywhere is enormous – for example, currently, 42% of all new cars sold today in Norway are fully electric – not just hybrids. This compares to about 2% in Britain, according to Fully Charged, and I’d suspect that the percentage is even lower in Oz.

There’s so much to find out about and write about in this field it’s hard to know where to start, so I’m going to limit myself in this post to electric cars and the situation in Australia.

First, as very much a lower middle class individual I want to know about cost, both upfront and ongoing. Now as you may be aware, Australia has basically given up on making its own cars, but we do have some imports worth considering, though we don’t get subsidies for buying them as they do in many other countries, nor do we have that much in the way of supportive infrastructure. Cars range in price from the Tesla Model X SUV, starting from $165,000 (forget it, I hate SUVs anyway), down to the Toyota Prius C and the Honda Jazz, both hybrids, starting at around $23,000. There’s also a ludicrously expensive BMW plug-in hybrid available, as well as the Nissan Leaf, the biggest selling electric car worldwide by a massive margin according to Fully Charged, but probably permanently outside of my price range at $51,000 or so.

I could only afford a bottom of the range hybrid vehicle, so how do hybrids work, and can you run your hybrid mostly on electricity? It seems that for this I would want a (more expensive) plug-in hybrid, as this passage from the Union of Concerned Scientists (USA) points out:

The most advanced hybrids have larger batteries and can recharge their batteries from an outlet, allowing them to drive extended distances on electricity before switching to [petrol] or diesel. Known as “plug-in hybrids,” these cars can offer much-improved environmental performance and increased fuel savings by substituting grid electricity for [petrol].

I could go on about the plug-ins but there’s not much point because there aren’t any available here within my price range. Really, only the Prius, the Honda Jazz and a Toyota Camry Hybrid (just discovered) are possibilities for me. Looking at reviews of the Prius, I find a number of people think it’s ugly but I don’t see it, and I’ve always considered myself a person of taste and discernment, like everyone else. They do tend to agree that it’s very fuel efficient, though lacking in oomph. Fuck oomph, I say. I’m the sort who drives cars reluctantly, and prefers a nice gentle cycle around the suburbs. Extremely fuel efficient, breezy and cheap. I’m indifferent to racing cars and all that shite.

Nissan Leaf

I note that the Prius  has regenerative braking – what the Fully Charged folks call ‘regen’. In fact this is a feature of all EVs and hybrids. I have no idea wtf it is, so I’ll explore it here. The Union of Concerned Scientists again:

Regenerative braking converts some of the energy lost during braking into usable electricity, stored in the batteries.

Regenerative braking” is another fuel-saving feature. Conventional cars rely entirely on friction brakes to slow down, dissipating the vehicle’s kinetic energy as heat. Regenerative braking allows some of that energy to be captured, turned into electricity, and stored in the batteries. This stored electricity can later be used to run the motor and accelerate the vehicle.

Of course, this doesn’t tell us how the energy is captured and stored, but more of that later. Regenerative braking doesn’t bring the car to a stop by itself, or lock the wheels, so it must be used in conjunction with frictional braking.  This requires drivers to be aware of both braking systems and how they’re combined – sometimes problematic in certain scenarios.

The V useful site How Stuff Works has a full-on post on regen, which I’ll inadequately summarise here. Regen (in cars) is actually celebrating its fiftieth birthday this year, having been first introduced in the Amitron, a car produced by American Motors in 1967. It never went into full-scale production. In conventional braking, the brake pads apply pressure to the brake rotors to the slow the vehicle down. That expends a lot of energy (imagine a large vehicle moving at high speed), not only between the pads and the rotor, but between the wheels and the road. However, regen is a different system altogether. When you hit the brake pedal of an EV (with hand or foot), this system puts the electric motor into reverse, slowing the wheels. By running backwards the motor acts somehow as a generator of electricity, which is then fed into the EV batteries. Here’s how HSW puts it:

One of the more interesting properties of an electric motor is that, when it’s run in one direction, it converts electrical energy into mechanical energy that can be used to perform work (such as turning the wheels of a car), but when the motor is run in the opposite direction, a properly designed motor becomes an electric generator, converting mechanical energy into electrical energy.

I still don’t get it. Anyway, apparently this type of braking system works best in city conditions where you’re stopping and going all the time. The whole system requires complex electronic circuitry which decides when to switch to reverse, and which of the two braking systems to use at any particular time. The best system does this automatically. In a review of a Smart Electric Drive car (I don’t know what that means – is ‘Smart’ a brand name? – is an electric drive different from an electric car??) on Fully Charged, the test driver described its radar-based regen, which connects with the GPS to anticipate, say, a long downhill part of the journey, and in consequence to adjust the regen for maximum efficiency. Ultimately, all this will be handled effectively in fully autonomous vehicles. Can’t wait to borrow one!

Smart Electric Drive, a cute two-seater

I’m still learning all this geeky stuff – never thought I’d be spending an arvo watching cars being test driven and  reviewed.  But these are EVs – don’t I sound the expert – and so the new technologies and their implications for the environment and our future make them much more interesting than the noise and gas-guzzling stink and the macho idiocy I’ve always associated with the infernal combustion engine.

What I have learned, apart from the importance of battery size (in kwh), people’s obsession with range and charge speed, and a little about charging devices, is that there’s real movement in Europe and Britain towards EVs, not to mention storage technology and microgrids and other clean energy developments, which makes me all the more frustrated to live in a country, so naturally endowed to take advantage of clean energy, whose federal government is asleep at the wheel on these matters, when it’s not being defensively scornful about all things renewable. Hopefully I’ll be able to report on positive local initiatives in this area in future, in spite of government inertia.

 

Written by stewart henderson

August 15, 2017 at 9:51 am

on the explosion of battery research – part two, a bitsy presentation

leave a comment »

This EV battery managed to run for 1200 kilometres on a single charge at an average of around 51 mph

Ok, in order to make myself fractionally knowledgable about this sort of stuff I find myself watching videos made by motor-mouthed super-geeks who regularly do blokes-and-sheds experiments with wires and circuits and volt-makers and resistors and things that go spark in the night, and I feel I’m taking a peek at an alternative universe that I’m not sure whether to wish I was born into, but I’ll try anyway to report on it all without sounding too swamped or stupefied by the detail.

However, before I go on, I must say that, since my interest in this stuff stems ultimately from my interest in developing cleaner as well as more efficient energy, and replacing fossil fuel as a principal energy source, I want to voice my suspicions about the Australian federal government’s attitude towards clean and renewable energy. This morning I heard Scott Morrison, our nation’s Treasurer, repeating the same deliberately misleading comments made recently by Josh Frydenberg (the nation’s energy minister, for Christ’s sake) about the Tesla battery, which is designed to provide back-up power as part of a six-point SA government plan which the feds are well aware of but are unwilling to say anything positive about – or anything at all. Morrison, Frydenberg and that other trail-blazing intellectual, Barnaby Joyce, our Deputy Prime Minister, have all been totally derisory of the planned battery, and their pointlessly negative comments have thrown the spotlight on something I’ve not sufficiently noticed before. This government, since the election of just over a year ago, has not had anything positive to say about clean energy. In fact it has never said anything at all on the subject, by deliberate policy I suspect. We know that our PM isn’t as stupid on clean energy as his ministers, but he’s obviously constrained by his conservative colleagues. It’s as if, like those mythical ostriches, they’re hoping the whole world of renewables will go away if they pay no attention to it.

Anyway, rather than be demoralised by these unfortunates, let’s explore the world of solutions.

As a tribute to those can-do, DIY geeky types I need to share a great video which proves you can run an electric vehicle on a single charge for well over 1000ks – theirs made it to 1200ks – 748 miles in that dear old US currency – averaging around 51 mph. It’s well worth a watch, though with all the interest there are no doubt other claimants to the record distance for a single charge. Anyway, you can’t help but admire these guys. Tesla, as the video shows, are still trying to make it to 1000ks, but that’s on a regular, commercial basis of course.

In this video, basically an interview with battery researcher and materials scientist Professor Peter Bruce at Oxford University, the subject was batteries as storage systems. These are the batteries you find in your smart phones and other devices, and in electric vehicles (EVs). They’ll also be important in the renewable energy future, for grid storage. You can pump electricity into these batteries and, through a chemical process that I’m still trying to get my head around, you can store it for later use. As Prof Bruce points out, the lithium-ion battery revolutionised the field by more or less doubling the energy density of batteries and making much recent portable electronics technology possible. This energy density feature is key – the Li-ion batteries can store more energy per unit mass and volume. Of course energy density isn’t the only variable they’re working on. Speed of charge, length of time (and/or amount of activity) between charging, number of discharge-recharge cycles per battery, safety and cost are all vitally important, but when we look at EVs and grid storage you’re looking at much larger scale batteries that can’t be simply upgraded or replaced every few months. So Bruce sees this as an advantage, in that recycling and re-using will be more of a feature of the new electrified age. Also, as very much a  scientist, Bruce is interested in how the rather sudden focus on battery storage reveals gaps in our knowledge which we didn’t really know we had – and this is how knowledge often progresses, when we find we have an urgent problem to solve and we need to look at the basics, the underlying mechanisms. For example, the key to Li-ion batteries is the lithium compound used, and whether you can get more lithium ions out of particular compounds, and/or get them to move more quickly between the electrodes to discharge and recharge the battery. This requires analysis and understanding at the fundamental, atomistic level. Also, current Li-ion batteries for portable devices generally use cobalt in the compound, which is too expensive for large-scale batteries. Iron, manganese and silicates are being looked at as cheaper alternatives. This is all new research – and he makes no mention of the work done by Goodenough, Braga et al.

In any case it’s fascinating how new problems lead to new solutions. The two most touted and developed forms of renewable energy – solar and wind – both have this major problem of intermittence. In the meantime, battery storage, for portable devices and EVs, has become a big thing, and now new developments are heating up the materials science field in an electrifying way, which will in turn hot up the EV and clean energy markets.

The video ended by neatly connecting with the geeky DIY video in showing how dumped, abandoned laptop batteries and other batteries had plenty of capacity left in them – more than 60% in many cases, which is more than useful for energy storage, so they were being harvested by PhD students for use in small-scale energy storage systems for developing countries. Great for LED lighting, which requires little power. The students were using an algorithm to get each battery in the system to discharge at different rates (since they all had different capacities or charge left in them) so they could get maximum capacity out of the system as a whole. I think I actually understood that!

Okay – something very exciting! The video mentioned above is the first I’ve seen of a British series called ‘Fully Charged’, all about batteries, EVs and renewable energy. I plan to watch the series for my education and for the thrill of it all. But imagine my surprise when I started watching this one, still part of the series, made here in Adelaide! I won’t go into the content of that video, which was about flow batteries which can store solar energy rather than transferring it to the grid. I need to bone up more on that technology before commenting, and it’s probably a bit pricey for the likes of me anyway. What was immediately interesting to me was how quickly he (Robert Llewellyn, the narrator/interviewer) cottoned on to our federal government’s extreme negativity regarding renewables. Glad to have that back-up! I note too, by the way, that Australia has no direct incentives to buy EVs, of which there are few in the country – again all due to our troglodyte government. It’s frankly embarrassing.

So, there’s so much happening with battery technology and its applications that I might need to take some time off to absorb all the videos and docos and blogs and podcasts and development plans and government directives and projects and whatnot that are coming out all the time from the usual and some quite unusual places, not to mention our own local South Australian activities and the naysayers buzzing around them. Then again I may be moved to charge forward and report on some half-digested new development or announcement tomorrow, who knows….

References

They’re all in the links above, and I highly recommend the British ‘Fully Charged’ videos produced by Robert Llewellyn and Johnny Smith, and the USA ‘jehugarcia’ videos, which, like the Brit ones but in a different way, are a lot of fun as well as educational.

 

Written by stewart henderson

August 1, 2017 at 9:26 pm