an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Posts Tagged ‘energy

some chatter on the National Energy Guarantee and our clouded energy future

leave a comment »

Sanjeev Gupta – making things happen

Canto: I think we need to get our heads around the National Energy Guarantee, the objections to it, and the future of energy in Australia – costs, viability, environmental issues and the like.

Jacinta: Oh no. So what is the National Energy Guarantee?

Canto: Well if we go to the government’s website on this we’ll get a spinned version, but it’s a start. They say it’s an attempt to guarantee reliability, affordability, baseload security, reduced emissions  and further investment into the nation’s energy system. They describe it as a market-based, technology-neutral response to the Finkel Review. They estimate a savings of around $120 between 2020 and 2030.

Jacinta: Sounds a bit vague.

Canto: Well there’s quite a bit of vagueness on their website frankly, but they present information on future projects, such as Snowy 2.0, which sound exciting but we’ll have to wait and see.

Jacinta: So, going to our favourite website on these matters, Renew Economy, I find outrage from the renewable energy sector about the latest government decision on the NEG:

Federal Coalition MPs voted on Tuesday [August 14] to support the National Energy Guarantee that proposes to ensure no new investment in large-scale wind, solar or battery storage for nearly a decade, and also expressed their support for a new government initiative they hope will support new coal-fired generation.

A lot of the critics’ ire is directed at modelling by the ESB (Energy Security Board) – established a year ago ‘to coordinate the implementation of the Finkel reform blueprint’ – which fails to account for major state and corporate investments in renewables.

Canto: And apparently the claimed savings to the consumer are partly based on the reduced cost of renewables which the federal government wants no part of! It’s like not having their cake but eating it too. Interested parties and opposition leaders have asked to see the modelling, and have received nothing beyond a single spreadsheet.

Jacinta: And since we’ve been talking about the OECD lately, this new NEG’s target for renewables puts us behind the majority of OECD nations. Only five of them – including the USA and Canada – have lower targets than us. And yet the potential for reduced emissions here is greater than just about anywhere else.

Canto: Well it’s no wonder that states such as Victoria and Queensland are unwilling to sign up. They have major renewable energy plans in store, and are challenging what would seem to be a baseless federal assumption, that bringing prices down means excluding renewables. In fact the Feds are quite contradictory and confused on the subject.

Jacinta: Well there’s a good chance the conservatives will get rolled at the next election, so I’m hoping that Federal Labor have all their energy plans ready. And speaking of optimism, here in South Australia we’re apparently still on target to be 100% renewable, energy-wise, by 2025. The AEMO has made this prediction in its Integrated Systems Plan, which is a 20-year blueprint for renewables around the country. There are quite a few projects being developed here in SA, including a 280 MW solar plant in Whyalla, courtesy of British billionaire Sanjeev Gupta…

Canto: Yes, Gupta has argued that the Federal proposal, or promise, to underwrite new power stations, which the conservatives have seized on as a way of advancing the coal agenda, can actually be used to build more solar farms with storage – what he calls ‘firm solar’. I don’t think it’s going to be much of a battle though. There’s no appetite for investing in new coal power stations among the cognoscenti. And another company looking to take advantage of the underwriting mechanism is Genex, which is building solar and hydro projects in Queensland.

Jacinta: Yes, the conservative dinosaurs can bellow all they like, and they may even have some popular appeal, but the smart developers and investors are the ones who’ll carry the day, and they won’t be investing in coal. Anyway, Gupta has very ambitious, transformative plans for Australia’s energy system, which he sees – irony of ironies – as being green-lighted by the Federal underwriting proposal, which is neutral as to the source of the energy used. I don’t know how all this works out financially, but obviously Gupta does, and he’s suggesting we could become a truly cheap energy producer, particularly in solar. He envisions 10GW of solar capacity across the country. He’s also keen to build electric vehicles in Australia, which we may have mentioned before, though maybe not in South Australia, which was the original idea.

Canto: And he’s also planning a storage battery near Port Augusta, due to commence later this year, which will out-biggen the recent Tesla battery. And speaking of the Tesla battery, which has been in operation for around nine months now, it might be worth having a look at how successful, or not, it has been.

Jacinta: Well, I’ve found an analysis of its first four months of operation here, on a blog called Energy Synapse, though it’s a bit difficult to follow. It points out that the battery has two essential purposes; first, to provide stability to the grid, and second, to ‘trade in and arbitrage the energy market’. Energy Synapse was only looking at its success in trading. I would’ve thought its first role was more important, but I suppose that’s because I’m not much of a trader.

Canto: What does arbitrage mean?

Jacinta: Well, it’s about trading in a commodity with a fluctuating price. The key for making a quid, of course, is to buy low and sell high. In the battery’s case, you have to buy energy to recharge it, and you sell it to the grid when need arises. That may not be something under your control, so I’m not sure how you can successfully arbitrage in such a situation. From what I can work out, during the period December to March, the battery was getting plenty of use. December can largely be ruled out as a testing period, but January – a high volatility period – and February were pretty successful, March less so. Estimated net revenue for the 4-month period was $1.4 million, which sounds pretty good to me. But presumably the summer months are better for the battery as that’s when the grid is under greatest pressure? It would be great to have a measure of its performance over the winter. In fact, a full 12 month review would probably be necessary, if not sufficient, for testing how well it trades. But the battery’s efficiency, its rapid response time and proven capability in smoothing out the effects of outages elsewhere, has captured the attention of the public and of other investors. People and companies much smarter and more onto this ball than I am, are getting into big batteries – not just Gupta’s Simec Zen Energy, but CWP Renewables in Victoria, and individuals throughout the country who are installing home battery storage to combine with solar.

Canto: And very recently the federal government has been under attack from its ultra-conservative wing for providing any comfort at all to the clean energy sector, and it’s even possible that the Prime Minister will lose his job over it. It’s bemusing to me that a party which always claims to be the pro-business party is at odds with the business community over this, with Abbott arguing for a hostile takeover of AGL’s Liddell coal-fired power station – a kind of nationalisation… It seems Abbott wants the whole nation to be operated on what he calls ‘reliable baseload power’, essentially from coal.

Jacinta: Well, NSW seems to be going through the horrors at present regarding reliable energy. Its a state heavily reliant on black coal, and it’s been suffering power shortages recently because power stations are undergoing maintenance or units are non-operational. It seems the dependence of industry on a few key providers is causing problems, and dispatchable supply from solar and wind is variable. It seems that leadership in co-ordinating the state energy system is lacking. And of course, that’s where Abbott is coming from. So maybe he’s half-right, he’s just hampered by his pro-coal, anti-renewables tunnel vision.

Canto: Meanwhile the NEG is being roundly criticised, indeed summarily dismissed, by all and sundry, and all we can really be sure of is that leadership in the field of energy will come from particular state governments and private corporations for the foreseeable future.

References

https://www.afr.com/news/sanjeev-gupta-crashes-negplus-coal-party-with-14b-green-energy-plan-20180817-h144kr

https://reneweconomy.com.au/gupta-accc-underwriting-idea-may-help-slash-solar-costs-to-20s-mwh-19171/

https://energysynapse.com.au/south-australia-tesla-battery-energy-market/

https://theconversation.com/a-month-in-teslas-sa-battery-is-surpassing-expectations-89770

https://www.smh.com.au/business/markets/tomago-aluminium-warns-of-energy-crisis-as-power-supply-falters-20180608-p4zkbw.html

https://reneweconomy.com.au/full-absurdity-of-national-energy-guarantee-laid-bare-75082/

Written by stewart henderson

August 20, 2018 at 12:38 pm

Useful stuff on extremophiles and their tricks

leave a comment »

A tardigrade or water bear, emblematic creature for extremophile-philes everywhere. Look em up, cause they’re not mentioned in this article

I’ll try to wean myself from the largely thankless task of writing about politics by picking a topic, almost at random, though one that I know will keep me engaged once I get started.

I was reading an article on the geology of the Earth’s crust and upper mantle (aka lithosphere) the other day, which mentioned the possibility of life in the mantle. Little is known for sure about the mantle’s composition and activity, because until recently drilling down to that level has been just a pipe dream, so to speak. The mantle’s distance from the earth’s surface varies considerably from region to region, but the average depth of the crust at its thinnest, ie under the ocean, is about 6 kilometres. In 2011, microscopic nematodes, or roundworms, were found some 4 kilometres below the surface in a gold mine in South Africa. Other single-celled micro-organisms were found in the region, at depths of 5 kms. Since we’ve rarely plumbed such depths, it’s not unreasonable to suppose that life down that far may be commonplace. We already know that life exists under the sea floor, at immense pressures. At the bottom of the Mariana Trench in the western Pacific, bacteria thrive 11 kilometres below sea level, and some bacteria have been tested in the lab as tolerating 1000 atmospheres of pressure.

Of course, the term extremophile, applied to such life forms, is typically anthropocentric, as they would presumably shuffle off their mortal coils tout de suite when subjected to our torturous environment. Then again…

Extremophiles are of course termed as such when found in conditions that are far from what we would term normal. Such conditions include extremely hot or cold environments, highly acidic or alkaline environments, anaerobic environments, and extreme pressure. They include archaea, the earliest living organisms we know of, some of which have been found to be halophilic (thriving in high salt conditions) or hyperthermophilic (lovers of temps around 80°C).

So how far down can these organisms go? What do they live on? What do they look like and how do they relate to other organisms on the bush of life?

This article from National Geographic online suggests the possibility of an ecosystem existing some eight or nine kilometres below the Mariana Trench. The trench is a subduction zone, a region known to provide pro-life environments of sorts. Analysing such regions requires geological as well as microbiological expertise. A geological process known as serpentinisation provides an ecosystem for methane-consuming microbes. Serpentine is a mineral formed deep in the lithosphere ‘when olivine in the upper mantle reacts with water pushed up from within the subduction zone’, according to the article. Hydrogen and methane are by-products of this reaction, and this serpentinisation process is already known to create microbial habitats at oceanic hydrothermal vents. Furthermore, in recent years, serpentinisation has been found ‘everywhere’, at subduction zones and within mountain ranges, suggesting that methane-supported life may be commonplace, and may even exist elsewhere in the solar system where there is tectonic activity, and an abundance of olivine.

Organisms living at great depths, under great pressure, are called piezophiles. So what is it that permits these bacteria, archaea and other unicellular organisms to thrive – or perhaps only just survive – in such conditions? There’s no one-size-fits-all answer, as some, such as xenophyophores, which are found at depth throughout the world’s oceans, are relatively complex creatures that appear to have adapted over time to increased pressure in order to benefit from benthic provender, while others like Halomonas salaria, a proteobacterium, are obligate piezophiles, unable to survive in under 1000 atmospheres. Unsurprisingly the outer membranes of these organisms are necessarily different in structure and composition from your common or garden microbes, but also unsurprisingly, it has proved difficult to analyse the structural features of piezophiles under lab conditions, though it’s clear that regulation of membrane phospholipids is key to maintaining a stable internal environment, which can not only withstand pressure, but also extremes of heat or cold or acidity. Proteins are also modified to maintain function. Although little is yet known about these organisms, the variety of their environments suggest a variety of adaptations independently arrived at. Most are autotrophs, or self-feeders, able to build organic compounds such as proteins through chemosynthesis in the absence of light. Many of them appear able to slow their metabolism and their reproduction rate by many factors.

Researchers are becoming increasingly interested in extremophiles in general, as they’ve widened the possibilities of life in environments hitherto dismissed as unviable – in boiling water or under mountains of ice for example – just as we’ve begun to discover or further explore other planets (and moons) within and beyond our solar system. The field of microbiology has also made great strides in recent decades. Don Cowan, a senior researcher at the University of Pretoria, describes the microbiological ‘revolution’ of the eighties:

In less than a decade, a combination of conceptual, scientific and technical developments all came together. These included the ability to purify total environmental DNA, the development of special marker sequences that can identify different microbial species, and the advent of very fast, very cheap DNA sequencing techniques.

Collectively known as metagenomics, these developments hugely stimulated the field of microbiology. They have done so across diverse areas of science, from biological methods for cleaning up environmental pollution and contamination, to human disease.

Researchers are applying these techniques to the examination and possible exploitation of extremophiles, for example to improve drought or temperature tolerance in plant species, for various pharmaceutical applications and possibly for the development of biofuels, as heat-tolerant enzymes enable plant tissues to be broken down more readily. The range of products and processes that can be improved by tapping into the enzyme production of various types of extremophiles is potentially vast, according to James Coker, a researcher at the University of Maryland’s Department of Biotechnology. In a 2016 paper, Coker admits that research in this field is new, but real progress has already been made:

Four success stories are the thermostable DNA polymerases used in the polymerase chain reaction (PCR) 17, various enzymes used in the process of making biofuels 18, organisms used in the mining process 19, and carotenoids used in the food and cosmetic industries 20. Other potential applications include making lactose-free milk 1; the production of antibiotics, anticancer, and antifungal drugs 6; and the production of electricity or, more accurately, the leaching of electrons to generate current that can be used or stored 21

That last-mentioned application is of particular interest (as are all the others), as clean electricity production and storage is a high priority issue for some. Extremophile microbial catalysts can be used to drive microbial electrochemical systems (MES), a new TLA which may or may not catch on. Related TLAs include the MFC (microbial fuel cell) and the MEC (microbial electrolysis cell). Without losing myself in too much detail here, the exploitation of these microbes to help drive reactions at the electrodes has a number of useful applications, such as the remediation of waste-water, desalination, biosensing and ‘generating electrical energy from marine sediment microbial fuel cells at low temperatures’ (Dopson et al, 2016). None of this is, as yet, set to revolutionise the clean energy industry, but these are just some of the largely unsung incremental developments that are, in fact, moving us towards more clever and efficient use of previously untapped renewable resources. I was about to use the metaphor ‘at the coalface’ – which would’ve been appropriately inappropriate.

It’s impossible for we dilettantes to keep up with all these discoveries and developments in a detailed way, but we can at least feel the excitement of work being done and advances being collaboratively made, as well as sensing the many obstacles and unforeseen complexities involved in transforming the viability of these amazing life-forms and their products into something viable and possibly life-transforming for the humans who have discovered them and unlocked their secrets. When politics and our inhumanity to others (human and non-human) lets us down, we can still marvel at our relentless drive and ingenuity.

 

Written by stewart henderson

July 14, 2018 at 8:50 am

the second law of thermodynamics – some preliminary thoughts

leave a comment »

the essential battle – to be more effectively productive than consumptive

Early on in his book Enlightenment Now, Steven Pinker makes much of the second law of thermodynamics, aka the law of entropy, as something way more than an ordinary law of physics, citing others who’ve claimed the same thing, including Arthur Eddington, C P Snow and Peter Atkins. Soaring rhetoric about pinnacles and ‘without which nought’ tend to be employed, tempting dilettantes come moi to wonder, if it’s so effing over-arching why is it only the second law?

So the first law of T is about conservation of energy, the third is about the impossibility of dropping to absolute zero. Maybe it’s just prosaically about chronology?

Maybe. The first law, first made specific by Rudolf Clausius in 1850 but much refined since, essentially states that in a closed system the internal energy is equal to the amount of heat applied minus the work done on the system’s external environment. Basically, you can’t get more out of the system than you put into it. The second law also involves many contributors, including Sadi Carnot in 1824, and Clausius again in 1850. Pinker attributes its largely up-to-date statistical iteration to the physicist Ludwig Boltzmann, whose work on the law dates to the 1860s and 70s. The third law, which also employs the concept of entropy, wasn’t formulated until the early twentieth century, firstly by the chemist Walter Nernst. So maybe it’s a chronological thing, but it certainly seems uncertain.

Anyway, the mystery attached to its title is just the start for the second law. It’s been formulated in multiple ways by scientists and popularisers. It’s mystical, hard-nosed, ineluctable, basic, obvious, magnificent and, according to Eddington, supreme. Entropy can be applied usefully to everything, from the universe to a cup of coffee and its consumer. The first point to always keep in mind – and for me that’s not easy – is that, left to itself, any system, such as those just mentioned, drifts inexorably from low to high entropy. To put it more succinctly, beds don’t make themselves. This obvious point may seem depressing, and often is, but it opens up the intriguing possibility that, if not left to itself, a bed can be made in many mysterious and inspiring ways. Energy into the system, systematically directed, creates art and science, life and intelligence, natural and synthetic. Natural selection from random variation, as we have so intelligently discovered, provides just such a system, through solar energy complexly distributed.

Of course, before we get too excited, there are problems. Although solar energy is the ultimate ‘without which nought’ of our systematic existence, or at least the emergence of it, we human energumens tamper with and lay waste to a great deal of other complex systems, including what we so euphemistically term ‘livestock’, in order to order ourselves in increasingly ordered, soi-disant civilised ways. From farming to fracking, from radioactive atolls to space debris, we leave many a wreck behind, and it’s still and may always be an open question whether we end up drowning in our own crap, species-wise. Animals are born exploiters, as Pinker writes, and maybe we should celebrate the fact that we’re better at it than other animals. Certainly we need to acknowledge it, with due deference and responsibility, while trying to temper the reckless excitement with which we often set out to do things – though they may be our best moments.

The point is that the principal human battle, the main game, is the battle against the inexorability of entropy, and that is why globalism, for as long as this globe alone is our home,  and humanism, as long as we see, as Darwin so clearly did, that our existence is due to, and dependent on, the evolutionary bush of living organisms on this planet, must be our highest priorities. William Faulkner famously expressed an expectation that humanity would prevail, but there’s nothing inevitable about it, and far from it, given the energy that needs to be constantly supplied to keep the consequences of the second law at bay. Perhaps the analogy of bacteria in a petri dish is just a little oversimplified – for a start, the nutrients in our particular petri dish have increased rather than diminished, thanks largely to human ingenuity. As a result, though the human population has increased seven-fold over the past 200 years, our per capita caloric intake has also increased. But of course there’s no guarantee that this will continue – and far from it.

One of the problems is being too smart for our own good, always arguably. In the early fifties, the Pacific, and Micronesia’s Marshall Islands in particular, was the scene of unprecedented damage and contamination as the USA tried to improve and perfect its new thermonuclear weaponry there. Not much concern was shown, of course, for the locals, not to mention the undersea life, at a time when the spectacular effects of the atom bombs on Japan had created both a global panic and a thrill about super-weaponry. The nuclear fusion weapons tested in that period dwarfed the Hiroshima bomb by many factors in terms of power and radioactive effects, and there was much misinformation even among experts about the extent of those effects. We were playing not just with fire, but with the most powerful and transformational energies in the universe, within a scant few decades of having discovered them. And today the USA, due to various accidents of history, has a nuclear arsenal of unfathomable destructive power, and a political system sorely in need of overhaul. With galloping developments in advanced AI, UAV technology and cyber hacking, it would be ridiculous to project complacent human triumphalism even a decade into the future, never mind into the era of terraforming other worlds.

Einstein famously said, at the dawn of the nuclear era, ‘everything has changed except our way of thinking’. Of course, ways of thinking are the most difficult things to change, and yet we have managed it to some extent. Even in the sixties, hawks in the US and other administration were talking up nuclear strikes, but apart from the buffoonish Trump and his counterpart Kim of North Korea – people we’re sadly obliged to take seriously – such talk is now largely redundant. After the horrors of two global conflicts, and through the growing realisation of our own destructive power, we’ve forced ourselves to think more globally and co-operatively. There’s actually no serious alternative. Having already radically altered the eco-system that has defied entropy for a blink of astronomical time, we’ll need all our co-operative energy to maintain the miracle that we’ve so recently learned so much about.

 

Written by stewart henderson

June 10, 2018 at 11:33 am

the continuing story of South Australia’s energy solutions

leave a comment »

In a very smart pre-election move, our state Premier Jay Weatherill has announced that there’s a trial under way to install Tesla batteries with solar panels on over 1,000 SA Housing Trust homes. The ultimate, rather ambitious aim, is to roll this out to 50,000 SA homes, thus creating a 250MW power plant, in essence. And not to be outdone, the opposition has engaged in a bit of commendable me-tooism, with a similar plan, actually announced last October. This in spite of the conservative Feds deriding SA labor’s ‘reckless experiments’ in renewables.

Initially the plan would be offered to public housing properties – which interests me, as a person who’s just left a solarised housing association property for one without solar. I’m in community housing, a subset of public housing. Such a ‘virtual’ power plant will, I think, make consumers more aware of energy resources and consumption. It’s a bit like owning your own bit of land instead of renting it. And it will also bring down electricity prices for those consumers.

This is a really important and exciting development, adding to and in many ways eclipsing other recently announced developments in SA, as written about previously. It will be, for a time at least, the world’s biggest virtual power plant, lending further stability to the grid. It’s also a welcome break for public housing tenants, among the most affected by rising power bills (though we’ll have to wait and see if prices do actually come down as a result of all this activity).

And the announcements and plans keep coming, with another big battery – our fourth – to be constructed in the mid-north, near Snowtown. The 21MW/26MWh battery will be built alongside a 44MW solar farm in the area (next to the big wind farm).

 

South Australia’s wind farms

Now, as someone not hugely well-versed in the renewable energy field and the energy market in general, I rely on various websites, journalists and pundits to keep me honest, and to help me make sense of weird websites such as this one, the apparent aim of which is to reveal all climate scientists as delusionary or fraudsters and all renewable energy as damaging or wasteful. Should they (these websites) be tackled or ignored? As a person concerned about the best use of energy, I think probably the latter. Anyway, one journalist always worth following is Giles Parkinson, who writes for Renew Economy, inter alia. In this article, Parkinson focuses on FCAS (frequency control and ancillary services), a set of network services overseen by AEMO, the Australian Energy Market Operator. According to Parkinson and other experts, the provision of these services has been a massive revenue source for an Australian ‘gas cartel’, which has been rorting the system at the expense of consumers, to the tune of many thousands of dollars. Enter the big Tesla battery , officially known as the Hornsdale Power Reserve (HPR), and the situation has changed drastically, to the benefit of all:

Rather than jumping up to prices of around $11,500 and $14,000/MW, the bidding of the Tesla big battery – and, in a major new development, the adjoining Hornsdale wind farm – helped (after an initial spike) to keep them at around $270/MW.

This saved several million dollars in FCAS charges (which are paid by other generators and big energy users) in a single day.

And that’s not the only impact. According to state government’s advisor, Frontier Economics, the average price of FCAS fell by around 75 per cent in December from the same month the previous year. Market players are delighted, and consumers should be too, because they will ultimately benefit. (Parkinson)

As experts are pointing out, the HPR is largely misconceived as an emergency stop-gap supplier for the whole state. It has other, more significant uses, which are proving invaluable. Its effect on FCAS, for example, and its ultra-ultra-quick responses to outages at major coal-fired generators outside of the state, and ‘its smoothing of wind output and trading in the wholesale market’. The key to its success, apparently, is its speed of effect – the ability to switch on or off in an instant.

Parkinson’s latest article is about another SA govt announcement – Australia’s first renewable-hydrogen electrolyser plant at Port Lincoln.

I’ve no idea what that means, but I’m about to find out – a little bit. I do know that once-hyped hydrogen hasn’t been receiving so much support lately as a fuel – though I don’t even understand how it works as a fuel. Anyway, this plant will be ten times bigger than one planned for the ACT as part of its push to have its electricity provided entirely by renewables. It’s called ‘green hydrogen’, and the set-up will include a 10MW hydrogen-fired gas turbine (the world’s largest) driven by local solar and wind power, and a 5MW hydrogen fuel cell. Parkinson doesn’t describe the underlying technology, so I’ll have a go.

It’s all about electrolysis, the production of hydrogen from H2O by the introduction of an electric current. Much of what follows comes from a 2015 puff piece of sorts from the German company Siemens. It argues, like many, that there’s no universal solution for electrical storage, and, like maybe not so many, that large-scale storage can only be addressed by pumped hydro, compressed air (CAES) and chemical storage media such as hydrogen and methane. Then it proceeds to pour cold water on hydro – ‘the potential to extend its current capacity is very limited’ – and on CAES ‘ – ‘has limitations on operational flexibility and capacity. I know nothing about CAES, but they’re probably right about hydro. Here’s their illustration of the process they have in mind, from generation to application.

Clearly the author of this document is being highly optimistic about the role of hydrogen in end-use applications. Don’t see too many hydrogen cars in the offing, though the Port Lincoln facility, it’s hoped, will produce hydrogen ‘that can be used to power fuel cell vehicles, make ammonia, generate electricity in a turbine or fuel cell, supply industry, or to export around the world’.

So how does electrolysis (of water) actually work? The answer, of course, is this:

2 H2O(l) → 2 H2(g) + O2(g); E0 = +1.229 V

Need I say more? On the right of the equation, E0 = +1.229 V, which basically means it takes 1.23 volts to split water. As shown above, Siemens is using PEM (Proton Exchange Membrane, or Polymer Electrolyte Membrane) electrolysis, though alkaline water electrolysis is another effective method. Not sure which which method is being used here.

In any case, it seems to be an approved and robust technology, and it will add to the variety of ‘disruptive’ and innovative plans and processes that are creating more regionalised networks throughout the state. And it gives us all incentives to learn more about how energy can be produced, stored and utilised.

Written by stewart henderson

February 14, 2018 at 4:50 pm

the battle for and against electric vehicles in Australia, among other things

leave a comment »

Toyota Camry hybrid – hybrids are way outselling pure EVs here, probably due to range anxiety and lack of infrastructure and other support

I’ve probably not been paying sufficient attention, but I’ve just learned that the Federal Energy minister, Josh Frydenberg, is advocating, against the naysayers, for government support to the EV industry. An article today (Jan 22) in The Australian has Frydenberg waxing lyrical about the future of EVs, as possibly being to the transport sector ‘what the iPhone has been to the communication sector’. It’s a battle the future-believers will obviously win. A spokesman for the naysayers, federal Liberal Party MP and AGW-denier Craig Kelly, was just on the gogglebox, mocking the idea of an EV plant in Elizabeth here in South Australia (the town I grew up in), sited in the recently abandoned GM Holden plant. His brilliantly incisive view was that since Holdens failed, a future EV plant was sure to fail too. In other words, Australians weren’t up to making cars, improving their practice, learning from international developments and so forth. Not exactly an Elon Musk attitude.

The electric vehicles for Elizabeth idea is being mooted by the British billionaire Sanjeev Gupta, the ‘man of steel’ with big ideas for Whyalla’s steelworks. Gupta has apparently become something of a specialist in corporates rescues, and he has plans for one of the biggest renewables plants in Australia – solar and storage – at Whyalla. His electric vehicle plans are obviously very preliminary at this stage.

Critics are arguing that EVs are no greener than conventional vehicles. Clearly their arguments are based on the dirty coal that currently produces most of the electricity in the Eastern states. Of course this is a problem, but of course there is a solution, which is gradually being implemented. Kiata wind farm in Western Victoria is one of many small-to medium-scale projects popping up in the Eastern states. Victoria’s Minister for Energy, Environment and Climate Change (an impressive mouthful) Lily D’Ambrosio says ‘we’re making Victoria the national leader in renewable energy’. Them’s fightin words to we South Aussies, but we’re not too worried, we’re way ahead at the moment. So clearly the EV revolution is going hand in hand with the renewable energy movement, and this will no doubt be reflected in infrastructure for charging EVs, sometimes assisted by governments, sometimes in spite of them.

Meanwhile, on the global scale, corporations are slowly shuffling onto the renewables bandwagon. Renew Economy has posted a press release from Bloomberg New Energy Finance, which shows that corporations signed a record volume of power purchase agreements (PPAs) for clean energy in 2017, with the USA shuffling fastest, in spite of, or more likely because of, Trump’s dumbfuckery. The cost-competitiveness of renewables is one of the principal reasons for the uptick, and it looks like 2018 will be another mini-boom year, in spite of obstacles such as reducing or disappearing subsidies, and import tariffs for solar PVs. Anyway, the press release is well worth a read, as it provides a neat sketch of where things are heading in the complex global renewables market.

Getting back to Australia and its sluggish EV market, the naysayers are touting a finding in the Green Vehicle Guide, a federal government website, which suggested that a Tesla powered by a coal-intensive grid emitted more greenhouse gas than a Toyota Corolla. All this is described in a recent SMH article, together with a 2016 report, commissioned by the government, which claimed that cars driven in the Eastern states have a “higher CO2 output than those emitted from the tailpipes of comparative petrol cars”. However, government spokespeople are now admitting that the grid’s emission intensity will continue to fall into the future, and that battery efficiency and EV performance are continuously improving – as is obvious. Still, there’s no sign of subsidies for EVs from this government, or of future penalties for diesel and petrol guzzlers. Meanwhile, the monstrous SUV has become the vehicle of choice for most Australians.

While there are many many honourable exceptions, and so many exciting clean green projects up and running or waiting in the wings, the bulk of Australians aren’t getting the urgency of climate change. CO2 levels are the highest they’ve been in 15 million years (or 3 million, depending on website), and the last two years’ published recordings at Mauna Loa (2015 and 2016) showed increases in atmospheric CO2 of 3PPM for each year, for the first time since recording began in 1960 (when it was under 1PPM). This rate of CO2 growth, apparently increasing – though with variations due largely to ENSO – is phenomenal. There’s always going to be a see-saw in the data, but it’s an ever-rising see-saw. The overall levels of atmospheric CO2 are now well above 400PPM. Climate Central describes these levels as ‘permanent’, as if humans and their effects will be around forever – how short-sighted we all are.

The relationship between atmospheric CO2 and global warming is fiendishly complex, and I’ll try, with no doubt limited success, to tackle it in future posts.

 

Mustn’t forget my update on Trump’s downfall: the Mueller team has very recently interviewed A-G Sessions, who’s been less than honest about his meetings with Russians. Nobody knows what Sessions was asked about in in his lengthy session (haha) with the inquirers, but he’s a key figure when it comes to obstruction of justice as well as conspiracy. Word now is that Trump himself will be questioned within weeks, which could be either the beginning of the end, or just the end. Dare to hope.

 

Written by stewart henderson

January 26, 2018 at 10:26 am

all renewable energy by 2050? Hang on a tick

leave a comment »

Sir David McKay, who died in 2016 of stomach cancer, aged 49. A great loss.

The late Sir David McKay, physicist, engineer, sustainable energy expert, Cambridge professor and Royal Society Fellow, has just become known to me through his 2012 TED talk and a lengthier exposition of the same ideas presented at Harvard. These talks were designed, to ‘cut through some of the greenwash’ and provide a realistic account of what can be done, on both the supply and the demand side, to reduce fossil fuel consumption and transform our energy economy.

As I need to keep saying, I’m far from an expert on this stuff, and I’m always impressed by the ingenious developments in the field and the promise of new technology, in batteries and other storage systems – like the compressed air underwater energy storage system being trialled in Lake Ontario, Toronto. But McKay’s contributions are helping me to think more realistically about the enormity of the problem of weaning ourselves from fossil fuels as well as to think more practically about my own domestic usage and the demand side more generally.

While McKay was no renewable energy sceptic or climate change denier, his ‘arithmetical’ view of the future poured a lot of cold hydro on the rosy idea that we’d be living in an all-renewables-powered biosphere within x decades. So I want to take a closer look at some aspects of what he was saying (he also wrote a highly-regarded book, Sustainable energy – without the hot air, available free online).

I particularly want to look at two forms of renewable energy that he talked about; wind and solar. He also talked at some length about two other energy sources, biofuels and nuclear, but I’ve never been much keen on biofuels, which in any case seem to have been largely taken off the menu in recent years, and nuclear, as McKay admits, has a popularity problem – a massive one here in Australia, unfortunately. What I say here about wind and solar will be gleaned largely fromMackay’s Harvard talk, but I’ve downloaded and plan to read his book in the near future.

Mackay has calculated that the current energy production of wind turbines in windy Britain is about 2.5 watts per square metre, and by multiplying per capita energy consumption by population density, you get power consumed per unit area, which for Britain is about 1.25 watts per square metre. This suggests that to cover the consumption of Britain solely by wind, you’d need an area, on land or sea, half the area of Britain. This is clearly not feasible, though of course nobody in Britain, I hope, was ever expecting to have all their energy needs provided by wind. The situation is vastly different for South Australia, two thirds of which is currently powered by wind. SA has vastly more land than Britain and vastly less people.

Though I’m sure it’s possible to quibble with Mckay’s figures and calculations, what he brings to the issues, I think, is a global, as well as a particular perspective that can be lost when you focus, as I have, on local success. For example, South Australia has been very successful in its deployment of wind power over a short period of time, and it’s easy to get carried away and think, if we can do it, why not state x or country y? But SA is a state with a small population and a very large area, and plenty of wind to capture. This just can’t be replicated in, say, Massachussetts, with more than three times the population, a thirtieth of the area, and little wind.

So McKay wasn’t offering global solutions, nor was he dismissing local ones. He was simply pointing out the complexity of the problem in physical and arithmetical terms of weaning ourselves from fossil fuels, as well as getting us thinking about our personal responsibilities on the demand side. Solar isn’t much of a national solution in Britain, though it could be in Australia, which could be a net exporter of renewables, as Elon Musk has suggested, but to which countries, and how exactly do you export solar energy? You’d need conversion and transmission and bilateral agreements. All of this while fighting entrenched interests and upsetting long-standing arrangements. Having said this, more people are hopping on the renewables bus and it’s almost becoming unfashionable, in most western countries outside of Australia, to be dismissive of them, a noticeable change in the last decade.

So what’s the point of this post? It’s to heed McKay’s advice that we need to recognise the complexity of the problem, to keep all possible reasonable solutions on the table, to become more aware, as individuals, communities and states, of our energy consumption, and to recognise that there’s never going to be a one-type-fits-all fix. Environments and needs vary widely, so we need to find particular solutions and we also need to find ways of joining and mixing those solutions together in effective networks. It all sounds pretty daunting, but the fact is, we’re already moving in the right direction, and there’s much to be positive about. Technology and engineering are international, and those in the business are hunting out solutions across the globe and thinking of harnessing and adapting them to their own region, in the process building communication, sharing information and expertise and raising consciousness about energy supply and consumption. And another positive is the endless innovation that comes with thinking about energy solutions in new ways, like small, cheap solar panels to provide energy in developing regions, backyard or small-scale wind-turbines in suitable locations, processing waste to fuel, new developments in batteries and EVs, and so on. So, while there aren’t major, mind-blowing solutions to our fossil-fuel dependence in the offing, we are making progress, incrementally, and the effects of climate change, as they become more impactful, will no doubt accelerate our progress and innovation. We have no option but to think and act positively.

portable solar panels can be surprisingly useful, and cheap

In a future post I’ll look at the demand side, following McKay and many others. Having just moved house, and sadly leaving solar panels behind, it’s time to find out where my meter is, and check our consumption.

 

On Trump’s downfall: Fire and Fury, the overly-discussed tell-all book about Trump and the White House, is unlikely to affect Trump’s base though it will hopefully toughen the opposition. Trump’s rating remains below 40% and nothing much has happened so far this year. There’s talk of Oprah Winfrey standing for the Presidency in 2020 – please no! – but Trump will be in jail by then and Americans will have lost their appetite for ‘celebrity’ candidates. I’m looking out for Elizabeth Warren.

Written by stewart henderson

January 11, 2018 at 9:03 am

the battery, Snowy Hydro and other stuff

leave a comment »

Let’s get back to batteries, clean energy and Australia. Here’s a bit of interesting news to smack our clean-energy-fearing Feds with – you know, Freudenberg, Morrison and co. The Tesla Big Battery successfully installed at the beginning of summer, and lampooned by the Feds, turns out to be doing a far better job than expected, and not just here in South Australia. Giles Parkinson reported on it in Renew Economy on December 19:

The Tesla big battery is having a big impact on Australia’s electricity market, far beyond the South Australia grid where it was expected to time shift a small amount of wind energy and provide network services and emergency back-up in case of a major problem.

Last Thursday, one of the biggest coal units in Australia, Loy Yang A 3, tripped without warning at 1.59am, with the sudden loss of 560MW and causing a slump in frequency on the network.

What happened next has stunned electricity industry insiders and given food for thought over the near to medium term future of the grid, such was the rapid response of the Tesla big battery to an event that happened nearly 1,000km away.

The Loy Yang brown coal fired power station is in south eastern Victoria, so why did South Australia’s pride and joy respond to a problem in our dirty-coal neighbouring state? It surely wouldn’t have been contracted to, or would it? Parkinson also speculates about this. Apparently, when a power station trips, there’s always another unit contracted to provide back-up, officially called FCAS (frequency control and ancillary services). In Loy Yang’s case it’s a coal generator in Gladstone, Queensland. This generator did respond to the problem, within seconds, but the Tesla BB beat it to the punch, responding within milliseconds. That’s an important point; the Tesla BB didn’t avert a blackout, it simply proved its worth, without being asked. And it has been doing so regularly since early December. It seems the Tesla BB has cornered the market for fast frequency control. Don’t hold your breath for the Feds to acknowledge this, but they will have taken note, unless they’re completely stupid. They’ll be finding some way to play it (or downplay it) politically.

As Parkinson notes in another article, the energy industry has been slow to respond, in terms of regulation and accommodation, to the deployment of battery systems and their rapid charge-discharge features. Currently, providing FCAS is financially rewarded, which may have to do with costs involved but the cost/reward relationship appears to be out of kilter. In any case, battery response is much more cost-effective and threatens the antiquated reward system. The AEMC is planning to review frequency control frameworks, but it’ll no doubt be a slow process.

This is an incredibly complex area, combining new, barely-understood (by me) technologies of generation and storage, and the transformation of long-standing energy economies, with a host of vested interests, subsidies and forward plans, but I intend to struggle towards enlightenment, as far as I can.

Neoen’s Hornsdale Wind Farm

Regardless of regulation and grid problems, renewable energy projects keep on popping up, or at least popping into my consciousness through my desultory reading (NY resolution: inform myself much more on what’s going on, here and elsewhere, in clean energy). For example, the Murra Warra wind farm’s first stage will have an output of 226MW,  which has already been sold to a consortium of Australian corporations including Telstra and ANZ. The farm is near Horsham in western Victoria, and will finally have a capacity of up to 429MW, making it one of the biggest in the Southern Hemisphere. And of course there are many other projects underway. Back in August, the Renewable Energy Index, a monthly account of the renewable energy sector, was launched. Its first publication, by Green Energy Markets, was a benchmark report for 2016-7, all very glossy and positive. The latest publication, the November index, shows that rooftop solar installations for that month broke the monthly record set in June 2012 when subsidies were twice to three times what they are today. The publication’s headline is that the 2020 RET will be exceeded and that there are ‘enough renewable energy projects now under development to deliver half of Australia’s electricity by 2030’. The Clean Energy Council, the peak body for Australian dean energy businesses, also produces an annual report, so it will be interesting to compare its 2017 version with the Renewable Energy Index.

Hydro is in fact the biggest clean energy provider, with 42.3% of the nation’s renewable energy according to the 2016 Clean Energy Australia Report. Wind, however, is the fastest growing provider. This brings me to a topic I’ve so far avoided: The $4 billion Snowy Hydro 2 scheme.

Here’s what I’m garnering from various experts. It’s a storage scheme and that’s all to the good. As a major project it will have a long lead time, and that’s not so good, especially considering the fast growing and relatively unpredictable future for energy storage. As a storage system it will be a peak load provider, so can’t be compared to the Hazelwood dirty coal station, which is a 24/7 base load supplier. There’s a lot of misinformation from the Feds about the benefits, eg to South Australia, which won’t benefit and doesn’t need it, it’s sorting its own problems very nicely thanks. There’s a question about using water as an electricity supplier, due to water shortages, climate change and the real possibility of more droughts in the future. There are also environmental considerations – the development is located in Kosciuszko National Park. There’s some doubt too about the 2000MW figure being touted by the Feds, an increase of 50% to the existing scheme. However, many of these experts, mostly academics, favour the scheme as a boost to renewable energy investment which should be applied along with the other renewables to transform the market. In saying this, most experts agree that there’s been a singular lack of leadership and common-sense consensus on dealing with this process of transformation. It has been left mostly to the states and private enterprise to provide the initiative.

 

With each post I’ll add something on the projected Trump downfall.

Just watched a CNN special report: The Trump Russia Investigation. It suggests to me that the notorious Trump Tower meeting, while nothing much in itself, is but a small piece of the growing case against Trump. It filled me in muchly on the much-discussed ‘dossier’ released just before Trump’s inauguration, the commandeering of Facebook by Russian operatives for a disinformation campaign, stirring up issues on immigration, gays, guns, etc, and much more. I still maintain that he won’t be in office by year’s end.

 

 

Written by stewart henderson

January 6, 2018 at 7:20 pm