a bonobo humanity?

‘Rise above yourself and grasp the world’ Archimedes – attribution

Posts Tagged ‘lithium ion batteries

a wee post on developments in battery technology for EVs

leave a comment »

And now for something completely different.

An article in a recent issue of The Economist (August 26- September 1 2023) , which I read mainly for the political and technological stuff, as economics is largely gibberish to me, deals with the development of solid state Li-ion batteries for EVs, and their scaling up for a new generation of such vehicles. So this piece is for educating myself, or trying to, on solid state electrolysis and how such batteries will, maybe, hasten the end of the infernal combustion engine for families and hoons everywhere.

As the article points out, there are three main issues which might be preventing the greater uptake of EVs – range, cost and charging times. All of which can be fixed with better-performing and cheaper batteries. Easy-peasy.

Current or ‘traditional’ lithium-ion batteries took quite a while to go from the drawing-board to useful application:

Although they were invented in the late 1970s, Li-ion batteries… were not fully commercialised until the early 1990s, at first for portable electronic devices, such as laptop computers and cell phones, and then as bigger versions that could be used to power a new generation of EVs.

The solid state version of these batteries, which are potentially safer, longer lasting and more efficient, have been promised for some time, but they’re now on the point of commercial reality, or just about. But what does ‘solid state’ mean, and why aren’t current Li-ion batteries solid – and what makes them liquid?

It’s all about the electrolyte, the key component of all batteries:

… electrolytes are used in a liquid form for good reason. Ions are charged particles, and are created at one of the batteries electrodes, the cathode, when the cell is charged, causing electrons to be stripped from lithium atoms. The electrolyte provides a medium through which the ions migrate to a second electrode, the anode. As they do so, the ions pass through a porous separator that keeps the electrodes apart to prevent a short-circuit. The electrons created at the cathode, meanwhile, travel towards the anode along the wires of the external charging circuit. Ions and electrons reunite at the anode where they are stored. When the battery discharges, the process reverses, with electrons in the circuit powering a device – which in the case of an EV is its electric motor.

This explanation, from the article referenced below, requires some explaining, at least for me. So, from the beginning, electro-lysis (coined by Faraday) means cutting, or splitting, by means of electricity. Stripping electrons (negatively charged) from atoms, thus ionising them (positive charge). The level of electric pressure, or voltage, required for electrolysis to occur is called the decomposition potential. 

So the question I ask myself, in my non-scientific way, is – can electrolysis be applied to any element? Presumably, with a Li-ion battery, it’s applied to lithium, which is an ‘alkali metal’. Interestingly, according to Wikipedia,

Australia has one of the biggest lithium reserves and is the biggest producer of lithium by weight, with most of its production coming from mines in Western Australia.

So, a quick look-up tells me that electrolysis can be and is applied to many elements and compounds and substances, including water (for the production of hydrogen fuel, though that’s a potentially fraught process). Anyway, it seems that, though the electrolyte in a Li-ion battery is liquid ‘for good reason’, I still don’t know what that reason is, though I’m guessing that it’s because the ions can move more readily through liquid to the terminals (cathode and anode). So, ‘the most common electrolyte in lithium batteries is a lithium salt solution such as lithium hexafluorophosphate (LiPF6)’. Polymer gels are also used, but the development of a solid state battery has been a kind of holy grail for some time, as this would, or should, reduce flammability and increase voltage, cycling performance, strength and overall lifespan. One of the major hurdles is cost, as companies seek to develop a particular type to scale up. Over the past ten years or so, as it has become clear that EVs will be the future of motoring, the race has been on to produce effective and economic solid state batteries (SSBs). Here’s how Wikipedia puts it:

In 2013, researchers at the University of Colorado Boulder announced the development of a solid-state lithium battery, with a solid composite cathode based on an iron–sulfur chemistry, that promised higher energy capacity compared to already-existing SSBs. In 2017, John Goodenough, the co-inventor of Li-ion batteries, unveiled a solid-state glass battery, using a glass electrolyte and an alkali-metal anode consisting of lithium, sodium or potassium. Later that year, Toyota announced the deepening of its decades-long partnership with Panasonic, including a collaboration on solid-state batteries.

Various solids are being trialled, including ceramics and solid polymers. The US company QuantumScape has teamed with Volkswagen to mass-produce lithium metal batteries, which use metallic lithium as an anode. My mind is glazing over as I try to understand the technology involved, but here’a a quote from QuantumScape’s website:

QuantumScape’s technology platform is designed to pair with a variety of cathode chemistries — with the potential to significantly improve the energy densities of today’s Nickel Manganese Cobalt (NMC) and Lithium Iron Phosphate (LFP)-based battery cells. This capability enables optimization for diverse energy storage applications and gives our platform the flexibility to benefit from future cathode chemistry advancements.

They’re hoping for commercial availablity of their product by the end of next year, apparently. The same webpage tries to answer a number of FAQs, such as the benefits of solid state lithium, re weight and volume, the effects on EV range, the nature of the separator material, and co-existence with other current and emerging technologies.

I think that’ll do for my amateur analysis, for now, but I do hope to keep an eye on this technology, and the rise of EVs and surrounding infrastructure going forward.

References

‘The race to build a superbattery’,  The Economist, August 26 – September 1 2023

https://en.wikipedia.org/wiki/Electrolysis

https://en.wikipedia.org/wiki/Lithium_mining_in_Australia

What Is Battery Electrolyte and How Does It Work?

https://en.wikipedia.org/wiki/Solid-state_battery

https://www.quantumscape.com/technology/

Written by stewart henderson

October 2, 2023 at 3:06 pm

capacitors, supercapacitors and electric vehicles

leave a comment »

from the video ‘what are supercapacitors’

Jacinta: New developments in battery and capacitor technology are enough to make any newbie’s head spin.

Canto: So what’s a supercapacitor? Apart from being a super capacitor?

Jacinta: I don’t know but I need to find out fast because supercapacitors are about to be eclipsed by a new technology developed in Great Britain which they estimate as being   ‘between 1,000 and 10,000-times more effective than current supercapacitors’.

Canto: Shite, they’ll have to think of a new name, or downgrade the others to ‘those devices formerly known as supercapacitors’. But then, I’ll believe this new tech when I see it.

Jacinta: Now now, let’s get on board, superdisruptive technology here we come. Current supercapacitors are called such because they can charge and discharge very quickly over large numbers of cycles, but their storage capacity is limited in comparison to batteries…

Canto: Apparently young Elon Musk predicted some time ago that supercapacitors would provide the next major breakthrough in EVs.

Jacinta: Clever he. But these ultra-high-energy density storage devices, these so-much-more-than-super-supercapacitors, could enable an EV to be charged to a 200 kilometre range in just a few seconds.

Canto: So can you give more detail on the technology?

Jacinta: The development is from a UK technology firm, Augmented Optics, and what I’m reading tells me that it’s all about ‘cross-linked gel electrolytes’ with ultra-high capacitance values which can combine with existing electrodes to create supercapacitors with greater energy storage than existing lithium-ion batteries. So if this technology works out, it will transform not only EVs but mobile devices, and really anything you care to mention, over a range of industries. Though everything I’ve read about this dates back to late last year, or reports on developments from then. Anyway, it’s all about the electrolyte material, which is some kind of highly conductive organic polymer.

Canto: Apparently the first supercapacitors were invented back in 1957. They store energy by means of static charge, and I’m not sure what that means…

Jacinta: We’ll have to do a post on static electricity.

Canto: In any case their energy density hasn’t been competitive with the latest batteries until now.

Jacinta: Yes it’s all been about energy density apparently. That’s one of the main reasons why the infernal combustion engine won out over the electric motor in the early days, and now the energy density race is being run between new-age supercapacitors and batteries.

Canto: So how are supercapacitors used today? I’ve heard that they’re useful in conjunction with regenerative braking, and I’ve also heard that there’s a bus that runs entirely on supercapacitors. How does that work?

Jacinta: Well back in early 2013 Mazda introduced a supercapacitor-based regen braking system in its Mazda 6. To quote more or less from this article by the Society of Automotive Engineers (SAE), kinetic energy from deceleration is converted to electricity by the variable-voltage alternator and transmitted to a supercapacitor, from which it flows through a dc-dc converter to 12-V electrical components.

Canto: Oh right, now I get it…

Jacinta: We’ll have to do posts on alternators, direct current and alternating current. As for your bus story, yes, capabuses, as they’re called, are being used in Shanghai. They use supercapacitors, or ultracapacitors as they’re sometimes called, for onboard power storage, and this usage is likely to spread with the continuous move away from fossil fuels and with developments in supercaps, as I’ve heard them called. Of course, this is a hybrid technology, but I think they’ll be going fully electric soon enough.

Canto: Or not soon enough for a lot of us.

Jacinta: Apparently, with China’s dictators imposing stringent emission standards, electric buses, operating on power lines (we call them trams) became more common. Of course electricity may be generated by coal-fired power stations, and that’s a problem, but this fascinating article looking at the famous Melbourne tram network (run mainly on dirty brown coal) shows that with high occupancy rates the greenhouse footprint per person is way lower than for car users and their passengers. But the capabuses don’t use power lines, though they apparently run on tracks and charge regularly at recharge stops along the way. The technology is being adopted elsewhere too of course.

Canto: So let me return again to basics – what’s the difference between a capacitor and and a super-ultra-whatever-capacitor?

Jacinta: I think the difference is just in the capacitance. I’m inferring that because I’m hearing, on these videos, capacitors being talked about in terms of micro-farads (a farad, remember, being a unit of capacitance), whereas supercapacitors have ‘super capacitance’, i.e more energy storage capability. But I’ve just discovered a neat video which really helps in understanding all this, so I’m going to do a breakdown of it. First, it shows a range of supercapacitors, which look very much like batteries, the largest of which has a capacitance, as shown on the label, of 3000 farads. So, more super than your average capacitor. It also says 2.7 V DC, which I’m sure is also highly relevant. We’re first told that they’re often used in the energy recovery system of vehicles, and that they have a lower energy density (10 to 100 times less than the best Li-ion batteries), but they can deliver 10 to 100 times more power than a Li-ion battery.

Canto: You’ll be explaining that?

Jacinta: Yes, later. Another big difference is in charge-recharge cycles. A good rechargeable battery may manage a thousand charge and recharge cycles, while a supercap can be good for a million. And the narrator even gives a reason, which excites me – it’s because they function by the movement of ions rather than by chemical reactions as batteries do. I’ve seen that in the videos on capacitors, described in our earlier post. A capacitor has to be hooked up to a battery – a power source. So then he uses an analogy to show the difference between power and energy, and I’m hoping it’ll provide me with a long-lasting lightbulb moment. His analogy is a bucket with a hole. The amount of water the bucket can hold – the size of the bucket if you like – equates to the bucket’s energy capacity. The size of the hole determines the amount of power it can release. So with this in mind, a supercar is like a small bucket with a big hole, while a battery is more like a big bucket with a small hole.

Canto: So the key to a supercap is that it can provide a lot of power quickly, by discharging, then it has to be recharged. That might explain their use in those capabuses – I think.

Jacinta: Yes, for regenerative braking, for cordless power tools and for flash cameras, and also for brief peak power supplies. Now I’ve jumped to another video, which inter alia shows how a supercapacitor coin cell is made – I’m quite excited about all this new info I’m assimilating. A parallel plate capacitor is separated by a non-conducting dielectric, and its capacitance is directly proportional to the surface area of the plates and inversely proportional to the distance between them. Its longer life is largely due to the fact that no chemical reaction occurs between the two plates. Supercapacitors have an electrolyte between the plates rather than a dielectric…

Canto: What’s the difference?

Jacinta: A dielectric is an insulating material that causes polarisation in an electric field, but let’s not go into that now. Back to supercapacitors and the first video. It describes one containing two identical carbon-based high surface area electrodes with a paper-based separator between. They’re connected to aluminium current collectors on each side. Between the electrodes, positive and negative ions float in an electrolyte solution. That’s when the cell isn’t charged. In a fully charged cell, the ions attach to the positively and negatively charged electrodes (or terminals) according to the law of attraction. So, our video takes us through the steps of the charge-storage process. First we connect our positive and negative terminals to an energy source. At the negative electrode an electrical field is generated and the electrode becomes negatively charged, attracting positive ions and repelling negative ones. Simultaneously, the opposite is happening at the positive electrode. In each case the ‘counter-ions’ are said to adsorb to the surface of the electrode…

Canto: Adsorption is the adherence of ions – or atoms or molecules – to a surface.

Jacinta: So now there’s a strong electrical field which holds together the electrons from the electrode and the positive ions from the electrolyte. That’s basically where the potential energy is being stored. So now we come to the discharge part, where we remove electrons through the external surface, at the electrode-electrolyte interface we would have an excess of positive ions, therefore a positive ion is repelled in order to return the interface to a state of charge neutrality – that is, the negative charge and the positive charge are balanced. So to summarise from the video, supercapacitors aren’t a substitute for batteries. They’re suited to different applications, applications requiring high power, with moderate to low energy requirements (in cranes and lifts, for example). They can also be used as voltage support for high-energy devices, such as fuel cells and batteries.

Canto: What’s a fuel cell? Will we do a post on that?

Jacinta: Probably. The video mentions that Honda has used a bank of ultra capacitors in their FCX fuel-cell vehicle to protect the fuel cell (whatever that is) from rapid voltage fluctuations. The reliability of supercapacitors makes them particularly useful in applications that are described as maintenance-free, such as space travel and wind turbines. Mazda also uses them to capture waste energy in their i-Eloop energy recovery system as used on the Mazda 6 and the Mazda 3, which sounds like something worth investigating.

References (videos can be accessed from the links above)

http://www.hybridcars.com/supercapacitor-breakthrough-allows-electric-vehicle-charging-in-seconds/

https://en.wikipedia.org/wiki/Supercapacitor

http://www.power-technology.com/features/featureelectric-vehicles-putting-the-super-in-supercapacitor-5714209/

http://articles.sae.org/11845/

https://www.ptua.org.au/myths/tram-emissions/

http://www.europlat.org/capabus-the-finest-advancement-for-electric-buses.htm

Written by stewart henderson

September 5, 2017 at 10:08 am

on the explosion of battery research – part one, some basic electrical concepts, and something about solid state batteries…

leave a comment »

just another type of battery technology not mentioned in this post

Okay I was going to write about gas prices in my next post but I’ve been side-tracked by the subject of batteries. Truth to tell, I’ve become mildly addicted to battery videos. So much seems to be happening in this field that it’s definitely affecting my neurotransmission.

Last post, I gave a brief overview of how lithium ion batteries work in general, and I made mention of the variety of materials used. What I’ve been learning over the past few days is that there’s an explosion of research into these materials as teams around the world compete to develop the next generation of batteries, sometimes called super-batteries just for added exhilaration. The key factors in the hunt for improvements are energy density (more energy for less volume), safety and cost.

To take an example, in this video describing one company’s production of lithium-ion batteries for electric and hybrid vehicles, four elements are mentioned – lithium, for the anode, a metallic oxide for the cathode, a dry solid polymer electrolyte and a metallic current collector. This is confusing. In other videos the current collectors are made from two different metals but there’s no mention of this here. Also in other videos, such as this one, the anode is made from layered graphite and the cathode is made from a lithium-based metallic oxide. More importantly, I was shocked to hear of the electrolyte material as I thought that solid electrolytes were still at the experimental stage. I’m on a steep and jagged learning curve. Fact is, I’ve had a mental block about electricity since high school science classes, and when I watch geeky home-made videos talking of volts, amps and watts I have no trouble thinking of Alessandro Volta, James Watt and André-Marie Ampère, but I have no idea of what these units actually measure. So I’m going to begin by explaining some basic concepts for my own sake.

Amps

Metals are different from other materials in that electrons, those negatively-charged sub-atomic particles that buzz around the nucleus, are able to move between atoms. The best metals in this regard, such as copper, are described as conductors. However, like-charged electrons repel each other so if you apply a force which pushes electrons in a particular direction, they will displace other electrons, creating a near-lightspeed flow which we call an electrical current. An amp is simply a measure of electron flow in a current, 1 ampere being 6.24 x 10¹8 (that’s the power of eighteen) per second. Two amps is twice that, and so on. This useful video provides info on a spectrum of currents, from the tiny ones in our mobile phone antennae to the very powerful ones in bolts of lightning. We use batteries to create this above-mentioned force. Connecting a battery to, say, a copper wire attached to a light bulb causes the current to flow to the bulb – a transfer of energy. Inserting a switch cuts off and reconnects the circuit. Fuses work in a similar way. Fuses are rated at a particular ampage, and if the current is too high, the fuse will melt, breaking the circuit. The battery’s negative electrode, or anode, drives the current, repelling electrons and creating a cascade effect through the wire, though I’m still not sure how that happens (perhaps I’ll find out when I look at voltage or something).

Volts

So, yes, volts are what push electrons around in an electric current. So a voltage source, such as a battery or an adjustable power supply, as in this video, produces a measurable force which applied to a conductor creates a current measurable in amps. The video also points out that voltage can be used as a signal, representing data – a whole other realm of technology. So to understand how voltage does what it does, we need to know what it is. It’s the product of a chemical reaction inside the battery, and it’s defined technically as a difference in electrical potential energy, per unit of charge, between two points. Potential energy is defined as ‘the potential to do work’, and that’s what a battery has. Energy – the ability to do work – is a scientific concept, which we measure in joules. A battery has electrical potential energy, as result of the chemical reactions going on inside it (or the potential chemical reactions? I’m not sure). A unit of charge is called a coulomb. One amp of current is equal to one coulomb of charge flowing per second. This is where it starts to get like electrickery for me, so I’ll quote directly from the video:

When we talk about electrical potential energy per unit of charge, we mean that a certain number of joules of energy are being transferred for every unit of charge that flows.

So apparently, with a 1.5 volt battery (and I note that’s your standard AA and AAA batteries), for every coulomb of charge that flows, 1.5 joules of energy are transferred. That is, 1.5 joules of chemical energy are being converted to electrical potential energy (I’m writing this but I don’t really get it). This is called ‘voltage’. So for every coulomb’s worth of electrons flowing, 1.5 joules of energy are produced and carried to the light bulb (or whatever), in that case producing light and heat. So the key is, one volt equals one joule per coulomb, four volts equals 4 joules per coulomb… Now, it’s a multiplication thing. In the adjustable power supply shown in the video, one volt (or joule per coulomb) produced 1.8 amps of current (1.8 coulombs per second). For every coulomb, a joule of energy is transferred, so in this case 1 x 1.8 joules of energy are being transferred every second. If the voltage is pushed up to two (2 joules per coulomb), it produces around 2 amps of current, so that’s 2 x 2 joules per second. Get it? So a 1.5 volt battery indicates that there’s a difference in electrical potential energy of 1.5 volts between the negative and positive terminals of the battery.

Watts

A watt is a unit of power, and it’s measured in joules per second. One watt equals one joule per second. So in the previous example, if 2 volts of pressure creates 2 amps of current, the result is that four watts of power are produced (voltage x current = power). So to produce a certain quantity of power, you can vary the voltage and the current, as long as the multiplied result is the same. For example, highly efficient LED lighting can draw more power from less voltage, and produces more light per watt (incandescent bulbs waste more energy in heat).

Ohms and Ohm’s law

The flow of electrons, the current, through a wire, may sometimes be too much to power a device safely, so we need a way to control the flow. We use resistors for this. In fact everything, including highly conductive copper, has resistance. The atoms in the copper vibrate slightly, hindering the flow and producing heat. Metals just happen to have less resistance than other materials. Resistance is measured in ohms (Ω). Less than one Ω would be a very low resistance. A mega-ohm (1 million Ω) would mean a very poor conductor. Using resistors with particular resistance values allows you to control the current flow. The mathematical relations between resistance, voltage and current are expressed in Ohm’s law, V = I x R, or R = V/I, or I = V/R (I being the current in amps). Thus, if you have a voltage (V) of 10, and you want to limit the current (I) to 10 milli-amps (10mA, or .01A), you would require a value for R of 1,000Ω. You can, of course, buy resistors of various values if you want to experiment with electrical circuitry, or for other reasons.

That’s enough about electricity in general for now, though I intend to continue to educate myself little by little on this vital subject. Let’s return now to the lithium-ion battery, which has so revolutionised modern technology. Its co-inventor, John Goodenough, in his nineties, has led a team which has apparently produced a new battery that is a great improvement on ole dendrite-ridden lithium-ion shite. These dendrites appear when the Li-ion batteries are charged too quickly. They’re strandy things that make their way through the liquid electrolyte and can cause a short-circuit. Goodenough has been working with Helena Braga, who has developed a solid glass electrolyte which has eliminated the dendrite problem. Further, they’ve replaced or at least modified the lithium metal oxide and the porous carbon electrodes with readily available sodium, and apparently they’re using much the same material for the cathode as the anode, which doesn’t make sense to many experts. Yet apparently it works, due to the use of glass, and only needs to be scaled up by industry, according to Braga. It promises to be cheaper, safer, faster-charging, more temperature-resistant and more energy dense than anything that has gone before. We’ll have to wait a while, though, to see what peer reviewers think, and how industry responds.

Now, I’ve just heard something about super-capacitors, which I suppose I’ll have to follow up on. And I’m betting there’re more surprises lurking in labs around the world…

 

 

Written by stewart henderson

July 29, 2017 at 4:00 pm

How will the super-duper Tesla battery work? And more on the price of electricity

leave a comment »

Image: Thermo Fisher Scientific Inc.

I received an email the other day from the Australia Insitute. I don’t know how that happened, I’ve never heard of the organisation. Apparently it’s Australia’s most influential progressive think-tank (self-described) and apparently I subscribed to it recently while in a barely conscious state. All good.

Anyway the topic was timely: ‘Rising Energy Bills: Blame Gas’.

In a very recent post I quoted from a few apparently reliable sources on the reason for South Australia’s very high electricity prices. Unfortunately there wasn’t too much agreement among them, though at least none of them blamed renewable energy. But neither did any of them blame gas, though one did point a finger at wholesale pricing. The Australia Institute’s email put it thus:

Yesterday, we released the latest Electricity Update of the National Energy Emissions Audit for July 2017. The report revealed a stunning correlation between domestic electricity prices and gas prices — particularly in South Australia — despite gas making up only 10 percent of electricity generation.

So this is a subject I need to return to – in my next post. This post will focus on batteries and storage.

Neoen, a French renewable energy company, is building a 315MW, 99 turbine wind farm near Jamestown in South Australia. Connected to this project will be an array of Tesla’s lithium ion Powerpack batteries. According to this ABC News article:

The array will be capable of an output of 100 megawatts (MW) of power at a time and the huge battery will be able to store 129 megawatt hours (MWh) of energy so, if used at full capacity, it would be able to provide its maximum output for more than an hour.

It will be a modular network, with each Powerpack about the size of a large fridge at 2.1 metres tall, 1.3m long and 0.8m wide. They weigh in at 1,200 kilograms each.

It will have just slightly more storage than the next biggest lithium battery, built by AES this year in southern California.

But Tesla’s 100 MW output would be more than three times larger than the AES battery and five times larger than anything Tesla has built previously.

I’m no electrochemist, but a nice scrutiny of these sentences identifies a clear distinction between output and storage. And the output of this planned battery is the pioneering aspect.

So here’s a very basic summary of how a rechargeable lithium ion battery works. Each battery (and they vary hugely in size) is made up of a number of cells, each a battery in itself. On opposite sides of the cell are conductive surfaces, aka current collectors, one of aluminium and the other of copper. Inside and joined to these surfaces are electrodes, the positive cathode and the negative anode. The cathode is made from a lithium metal oxide such as lithium cobalt oxide or lithium iron phosphate, which needs to have the purest, most uniform composition for maximum performance and longevity. The negative anode is made from graphite, a layered form of carbon. The layered structure allows the lithium ions (Li+) created by the current to be easily stored at and removed from the carbon surface. Between these electrodes, filling the cell, is an electrolyte fluid through which lithium ions flow from one electrode to the other, which charges and discharges the cell. Again the purity of this fluid is a vital factor (research is being done to come up with a form of solid electrolyte). Between the two electrodes is an insulating plastic separator, essential to keep the electrodes separate and prevent short-circuiting. This plastic membrane allows the lithium ions to pass through it. The battery is charged when the lithium ions have passed through the separator and become attached to and stored in the layered graphite of the anode. The battery is discharged by reversing the flow.

Lithium ion batteries are found not only in Tesla Powerpacks but generally in electric car batteries and many other devices such as my own iPhone and iPad. They’re lighter and have much less energy density than lead-acid batteries. The technology of lithium ion batteries is described in a number of useful online videos, of which the most comprehensive, I think, is a webinar from the American Chemistry Society (ACS), essentially an interview with Dee Strand, a lithium ion battery specialist and expert. Her talk also provides interesting ideas on how these types of batteries can be improved.

So a fully-charged cell has stored energy, and a discharging cell is producing output. There are variations in lithium ion battery technology, for example variations in the electrode materials, the electrolyte composition and the like, so we don’t know precisely what Tesla will be using for the South Australian battery system, but we have a fair idea.

In any case, there seems no obvious reason why this proven technology can’t be scaled up to meet the sort of need that was identified after last September’s state blackout. Now we just have to wait and see whether Musk will lose his bet regarding completion time come December.

Refs and info

http://www.tai.org.au/

http://www.abc.net.au/news/2017-07-07/what-is-tesla-big-sa-battery-and-how-will-it-work/8688992

Click to access AR-Lithium-Ion-Battery-Degradation-RandD-Mag-042214.pdf

http://www.abc.net.au/news/2017-07-07/sa-to-get-worlds-biggest-lithium-ion-battery/8687268

Just type in ‘lithium ion battery’ in youtube

 

 

Written by stewart henderson

July 19, 2017 at 1:00 pm