an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Posts Tagged ‘ozone

more about ozone, and the earth’s greatest extinction event

leave a comment »

the Siberian Traps are layers of flood basalt covering an area of 2 million square kilometres

Ozone, or trioxygen (O3), an unstable molecule which is regularly produced and destroyed by the action of sunlight on O2, is a vital feature in our atmosphere. It protects life on earth from the harmful effects of too much UV radiation, which can contribute to skin cancers in humans, and genetic abnormalities in plant life. In a previous post I wrote about the discovery of the ozone shield, and the hole above Antarctica, which we seem to be reducing – a credit to human global co-operation. In this post I’m going to try and get my head around whether or not ozone depletion played a role in the so-called end-Permian extinction of some 250 mya. 

I first read of this theory in David Beerling’s 2009 book The emerald planet, but recent research appears to have backed up Beerling’s scientific speculations – though speculation is too weak a word. Beerling is a world-renowned geobiologist and expert on historical global climate change. He’s also a historian of science, and in ‘An ancient ozone catastrophe?’, chapter 4 of The emerald planet, he describes the discovery and understanding of ozone through the research of Robert Strutt, Christian Schönbein, Marie Alfred Cornu, Walter Hartley, George Dobson, Sidney Chapman and Paul Crutzen, among others. He goes on to describe the ozone hole discovery in the 70s and 80s, before focusing on research into the possible effects of previous events – the Tunguska asteroid strike of 1908, the Mount Pinatubo eruption of 1991 and others – on atmospheric ozone levels, and then homes in on the greatest extinction event in the history of our planet – the end-Permian mass extinction, ‘the Great Dying’, which wiped out some 95% of all species then existing.

According to Beerling, it was an international team of palaeontologists led by Henk Visscher at the University of Utrecht who first made the claim that stratospheric ozone had substantially reduced in the end-Permian. They hypothesised that, due to the greatest volcanic eruptions in Earth history, which created the Siberian Traps (layers of solidified basalt covering a huge area of northern Russia), huge deposits of coal and salt, the largest on Earth, were disrupted:


The widespread heating of these sediments and the action of hot groundwater dissolving the ancient salts, was a subterranean pressure cooker synthesising a class of halogenated compounds called organohalogens, reactive chemicals that can participate in ozone destruction. And in less than half a million years, this chemical reactor is envisaged to have synthesised and churned out sufficiently large amounts of organohalogens to damage the ozone layer worldwide to create an intense increased flux of UV radiation.

However, Beerling questions this hypothesis and considers that it may have been the eruptions themselves, which lasted 2 million years and occurred at the Permian-Triassic boundary 250-252 mya, rather than their impact on salt deposits, that did the damage. There’s evidence that many of the eruptions originated from as deep as 10 kilometres below the surface, injected explosively enough to reach the stratosphere, and that these plumes contained substantial amounts of chlorine. 

More recent research, published this year, has further substantiated Visscher’s team’s finding regarding genetic mutations in ancient conifers and lycopsids, and their probable connection with UV radiation enabled by ozone destruction. The mutations were global and dated to the same period. Laboratory experiments exposing related modern plants to bursts of UV radiation have produced more or less identical spore mutations.

The exact chain of events linking the eruptions to the ozone destruction have yet to be worked out, and naturally there’s a lot of scientific argy-bargy going on, but the whole story, even considering that it occurred so far in the past is a reminder of the fragility of that part of our planet that most concerns us – the biosphere. The eruptions clearly altered atmospheric chemistry and temperature. Isotopic measurements of oxygen in sea water suggest that equatorial waters reached more than 40°C. As can be imagined, this had killer effects on multiple species. 

So, we’re continuing to gain knowledge on the ozone shield and its importance, and fragility. I don’t know that there are too many ozone hole skeptics around (I don’t want to look too hard), but if we could only get the same kind of apparent near-unanimity with regard to anthropogenic global warming, that would be great progress. 

Written by stewart henderson

October 10, 2018 at 3:15 pm

about ozone, its production and depletion

with one comment

an Arctic polar stratospheric cloud, photographed in Sweden (filched from a website of NOAA’s Earth System Research Laboratory)

People will remember the ‘hole in the ozone’ issue that came up in the eighties I think, and investigators found that it was all down to CFCs, which were quite quickly banned, and then everything was hunky dory….

Or that’s how I vaguely recall it. Time to take a much closer look. 

I take my cue from ‘An ancient ozone catastrophe?’, chapter 4 of David Beerling’s The emerald planet, in which he looks at the evidence for a previous ozone disaster and its possible relation to the great Permian extinction of 252 millions years ago. I’ll probe into that matter in another post. In this post I’ll try to answer some more basic questions – what is ozone, where is the ozone layer and why does it have a hole in it?

Ozone is also known as trioxygen, which gives a handy clue to its structure. Oxygen can exist in different allotropes or molecular structures which are more or less stable. O3, ozone, is much less stable than O2 and has a very pungent chlorine-like odour and a pale blue colour. It’s present in minute quantities throughout the atmosphere but is most concentrated in the lower part of the stratosphere, 20 to 30 kilometres above the Earth’s surface. This region is called the ozone layer, or ozone shield, though it’s still not particularly dense with ozone, and that density varies geographically and seasonally. Ozone’s instability means that it doesn’t last long, and has to be replenished continually.

In 1928 chlorofluorocarbons (CFCs) were developed as a seemingly safe form of refrigerant, which, under patent as Freon, came to be used in air-conditioners, fridges, hair-sprays and a variety of other products. As it turned out, these CFCs aren’t so harmless when they reach the upper atmosphere, where the chlorine reacts with ozone to form chlorine monoxide (ClO), and regular O2. This reaction is activated by ultraviolet radiation, which then breaks up the unstable ClO, leaving the chlorine to react with more ozone in a continuing cycle.

By the eighties, it had become clear that something was going wrong with the ozone layer. Studies revealed that a gigantic hole in the layer had opened up over Antarctica, and without going into detail, CFCs were found to be largely responsible. There was the usual fight with vested business interests, but in 1987 the Montreal protocol against the use of ozone-depleting substances (ODS) was drawn up, a landmark agreement which has been successful in starting off the long and far from completed process of repair of the ozone shield.

As a very effective oxidant, ozone has many commercial applications, but the same oxidising property makes it a danger to plant and animal tissue. Much better for us to keep most of it up above the troposphere, where its ability to absorb UV radiation has made it virtually essential for maintaining healthy life on Earth’s surface. 

So here are some questions. Why does ozone proliferate particularly at the top of the troposphere, in the lower stratosphere? If it’s so reactive, how does it maintain itself at a particular rate? Has the thinning or reduction of that layer seriously influenced life on Earth in the past? From my reading, mainly of Beerling, I think I can answer the first two questions. The third question, which Beerling explores in the above-mentioned chapter of his book, is more speculative, and more interesting. 

Sidney Chapman, a brilliant geophysicist and mathematician of the early twentieth century, essentially answered the first question. He realised that ozone was both formed and destroyed by the action of sunlight, specifically UV radiation, on atmospheric oxygen. He calculated that this action would reduce and finally stop at a point approximately 15 km above sea level, because the reactions which had produced the ozone higher up had absorbed the UV radiation in the process. No activation energy to produce any more ozone. That explained the lower limit of ozone. The upper limit was explained by the lack of oxygen in the upper stratosphere to produce a stable layer – for production to exceed destruction. This was interesting confirmation of observations made earlier by the meteorologist and balloonist Léon-Phillippe Teisserenc de Bort, who noted that, contrary to his expectations, the air temperature didn’t fall gradually with altitude but reached a point of stabilisation where the air even seemed to become warmer. He named this upper layer of air the stratosphere, and the cooler more turbulent layer below he called the troposphere. It’s now known that this upper-air warming is caused by the absorption of UV radiation by ozone.

Our picture of ozone still had some holes in it, however, as it seemed there was a lot less of it around than the calculations of Chapman suggested. To quote from Beerling’s book: 

… there had to be some as-yet unappreciated means by which ozone was being destroyed. The fundamental leap required to solve the problem was taken comparatively recently, in 1970, by a then young scientist called Paul Crutzen. Crutzen showed that, remarkably, the oxides of nitrogen, produced by soil microbes, catalysed the destruction of ozone many kilometres up in the stratosphere. Few people appreciate the marvellous fact that the cycling of nitrogen by the biosphere exerts an influence on the global ozone layer: life on Earth reaches out to the chemistry of the stratosphere. 

Now to explain why the hole in the ozone shield occurred above the Antarctic. My understanding and explanation starts with reading Beerling and ends with this post from the USA’s National Oceanic and Atmospheric Administration’s Earth System Research Laboratory (NOAA/ESRL). 

The ozone hole over Antarctica varies in size, and is largest in the months of winter and early spring. During these months, due to the large and mountainous land mass there, average minimum temperatures can reach as low as −90°C, which is on average 10°C lower than Arctic winter minimums (Arctic temperatures are generally more variable than in the Antarctic). When winter minimums fall below around −78°C at the poles, polar stratospheric clouds are formed, and this happens far more often in the Antarctic – for about five months in the year. Chemical reactions between halogen gases and these clouds produce the highly reactive gases chlorine monoxide (ClO) and bromine monoxide (BrO), which are destructive to ozone. 

this graphic shows that the Antarctic stratosphere is consistently colder, and less variable in temperature, than the Arctic. Polar stratospheric clouds (PSCs) form at −78°C

Most ozone is produced in the tropical stratosphere, in reactions driven by sunlight, but a slow movement of stratospheric air, known as the Brewer-Dobson circulation, transports it over time to the poles, so that ozone ends up being more sparse in the tropics. Interestingly, although most ozone-depleting substances – mainly halogen gases – are produced in the more humanly-populated northern hemisphere, complex tropospheric convection patterns distribute the gases more or less evenly throughout the lower atmosphere. Once in the stratosphere and distributed to the poles, the air carrying the halogen-gas products becomes isolated due to strong circumpolar winds, which are at their height during winter and early spring. This isolation preserves ozone depletion reactions for many weeks or months. The polar vortex at the Antarctic, being stronger than in the Arctic, is more effective in reducing the flow of ozone from tropical regions. 

So – I’ve looked here briefly at what ozone is, where it is, and how it’s produced and destroyed, but I haven’t really touched on its importance for protecting life here on Earth. So that, and whether its depletion may have had catastrophic consequences 250 million years ago, will be the focus of my next post. 

References

The Emerald Planet, by David Beerling, Oxford Landmark Science, 2009

https://www.esrl.noaa.gov/csd/assessments/ozone/2010/twentyquestions/Q10.pdf

https://en.wikipedia.org/wiki/Ozone

https://en.wikipedia.org/wiki/Brewer–Dobson_circulation

Written by stewart henderson

October 3, 2018 at 9:24 pm