an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Posts Tagged ‘pro-nucleus

epigenetics and imprinting 1 – it’s complex

leave a comment »

A useful summary - not explained in the text

The last book I read was The Epigenetics Revolution by Nessa Carey, though I’m not sure if I’ve really read it. So much of it was about persisting with the next sentence though I hadn’t fully understood the previous one. Biochemistry does that to me – too many proteins, versions of RNA, transposons, transferases, suppressors, catalysers, adjuvants and acronyms. And in the end I’m not at all sure how much progress we’re making in this apparently tantalising field.

So I’m going to pick out imprinting for starters, as a way of familiarising myself a little more with the epigenetic process of leaving tabs or marks on specific genes.

I know nothing about imprinting. Isn’t it what female birds do with their offspring, even when they’re still in the shell? Here’s how Wikipedia introduces it :

Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed in a parent-of-origin-specific manner. Forms of genomic imprinting have been demonstrated in fungi, plants and animals. As of 2014, there are about 150 imprinted genes known in the mouse and about half that in humans. Genomic imprinting is an inheritance process independent of the classical Mendelian inheritance. It is an epigenetic process that involves DNA methylation and histone methylation without altering the genetic sequence. These epigenetic marks are established (“imprinted”) in the germline (sperm or egg cells) of the parents and are maintained through mitotic cell divisions in the somatic cells of an organism.

This suggests that it’s not something life-forms do, it just happens. But there are a number of mysterious terms here that need exploring – ‘a parent-of-origin-specific manner’, ‘DNA methylation’ and ‘histone methylation’.

Briefly, to get all that DNA (between 2 and 3 metres to each nucleus) to fit inside that tiny space you need some expert packaging, and that’s where histones come in. They’re proteins that DNA gets wound around, like cotton reels, and together the histones and the DNA are called chromatin. They’re also divided into sections called nucleosomes.

DNA methylation is when a methyl group, derived from methane (CH3), is added to the DNA, affecting its activity, including repressing gene transcription. Histone methylation is when methyl groups are added to amino acids in histone proteins. Again these can repress or enhance gene transcription, depending on the amino acids and how they’re methylated.

The parent-of-origin thing is most interesting to me, and needs a bit more explaining. When a human sperm cell enters an egg cell, as the first step in fertilisation, it carries its load of 23 chromosomes in what is called a pro-nucleus. In a sense a sperm cell, much smaller than an egg, is nothing but a pro-nucleus surrounded by a membrane, with a tail for motility. Once inside the egg, the tail and the membrane are shed. The egg cell also has its load of 23 chromosomes in its pro-nucleus, but this is considerably larger than the male – and the human egg cell in its entirety has about 100,000 times the volume of a sperm cell. The point is that the differences in the male and female pro-nuclei have a lot to do with epigenetic effects including imprinting, which affect phenotypic traits, including disease prone-ness and structural effects in animals and plants. Tracing these effects in molecular terms to either parent therefore becomes a priority.

So, this is a little starter in what is an overwhelmingly complex topic. I shall return to it.

Written by stewart henderson

December 31, 2019 at 10:11 am