the new ussr illustrated

welcome to the Urbane Society for Skeptical Romantics, where pretentiousness is as common as muck

Posts Tagged ‘South Australia

more on Australia’s energy woes and solutions

leave a comment »

the SA Tesla Powerpack, again

Canto: So the new Tesla battery is now in its final testing phase, so South Australia can briefly enjoy some fame as having the biggest battery in the world, though I’m sure it’ll be superseded soon enough with all the activity worldwide in the battery and storage field.

Jacinta: Well I don’t think we need to get caught up with having the biggest X in the world, it’s more important that we’re seen as a place for innovation in energy storage and other matters energetic. So, first, there’s the Tesla battery, associated with the Hornsdale wind farm near Jamestown, and there are two other major battery storage systems well underway, one in Whyalla, designed for Whyalla Steel, to reduce their energy costs, and another smaller system next to AGL’s Wattle Point wind farm on Yorke Peninsula.

Canto: Well, given that the federal government likes to mock our Big Battery, can you tell me how the Tesla battery and the other batteries work to improve the state?

Jacinta: It’s a 100MW/129MWh installation, designed to serve two functions. A large portion of its stored power (70MW/39MWh) is for the state government to stabilise the grid in times of outage. Emergency situations. This will obviously be a temporary solution before other, slower reacting infrastructure can be brought into play. The rest is owned by Neoen, Tesla’s partner company and owner of the wind farm. They’ll use it to export at a profit when required – storing at low prices, exporting at higher prices. As to the Whyalla Steel battery, that’s privately owned, but it’s an obvious example, along with the AGL battery, of how energy can be produced and stored cleanly (Whyalla Steel relies on solar and hydro). They point the way forward.

Canto: Okay here’s a horrible question, because I doubt if there’s any quick ‘for dummies’ answer. What’s the difference between megawatts and megawatt-hours?

Jacinta: A megawatt, or a watt, is a measure of power, which is the rate of energy transfer. One watt equals one joule per second, and a megawatt is 1,000,000 watts, or 1,000 kilowatts. A megawatt-hour is one megawatt of power flowing for one hour.

Canto: Mmmm, I’m trying to work out whether I understand that.

Jacinta: Let’s take kilowatts. A kilowatt (KW) is 1,000 times the rate of energy transfer of a watt. In other words, 1000 joules/sec. One KWh is one hour at that rate of energy transfer. So you multiply the 1000 by 3,600, the number of seconds in an hour. That’s a big number, so you can express it in megajoules – the answer is 3.6Mj. One megajoule equals 1,000,000 joules of course.

Canto: Of course. So how is this working for South Australia’s leadership on renewables and shifting the whole country in that direction?

Genex Power site in far north Queensland – Australia’s largest solar farm together with a pumped hydro storage plant

Jacinta: Believe me it’s not all South Australia. There are all sorts of developments happening around the country, mostly non-government stuff, which I suppose our rightist, private enterprise feds would be very happy with. For example there’s the Genex Power solar, hydro and storage project in North Queensland, situated in an old gold mine. Apparently pumped hydro storage is a competitor with, or complementary to, battery storage. Simon Kidston, the Genex manager, argues that many other sites can be repurposed in this way.

Canto: And the cost of wind generation and solar PV is declining at a rate far exceeding expectations, especially those of government, precisely because of private enterprise activity.

Jacinta: Well, mainly because it’s a global market, with far bigger players than Australia. Inputs into renewables from states around the world – India, Mexico, even the Middle East – are causing prices to spiral down.

Canto: And almost as we speak the Tesla gridscale battery has become operational, and we’ve gained a tiny place in history. But what about this National Energy Guarantee from the feds, which everyone seems to be taking a swing at. What’s it all about?

Jacinta: This was announced a little over a month ago, as a rejection of our chief scientist’s Clean Energy Target. Note how the Feds again avoid using such terms as ‘clean’ and ‘renewable’ when it talks or presents energy policy. Anyway, it may or may not be a good thing – there’s a summary of what some experts are saying about it online, but most are saying it’s short on detail. It’s meant to guarantee a reliable stream of energy/electricity from retailers, never mind how the energy is generated – so the government can say it’s neither advocating nor poo-pooing renewables, it’s getting out of the way and letting retailers, some of whom are also generators, deliver the energy from whatever source they like, or can.

Canto: So they’re putting the onus on retailers. How so?

Jacinta: The Feds are saying retailers will have to make a certain amount of dispatchable power available, but there is one ridiculously modest stipulation – greenhouse emissions from the sector must be reduced by 26% by 2030. The sector can and must do much better than that. The electricity sector makes up about a third of emissions, and considering the slow movement on EVs and on emissions reductions generally, we’re unlikely to hold up our end of the Paris Agreement, considering the progressively increasing targets.

Canto: But that’s where they leave it up to the private sector. To go much further than their modest target. They would argue that they’re more interested in energy security.

Jacinta: They have a responsibility for providing security but not for reducing emissions? But it’s governments that signed up to Paris, not private enterprises. The experts are pointing this out with regard to other sectors. More government-driven vehicle emission standards, environmental building regulations, energy efficient industries and so forth.

Canto: And the Feds actually still have a renewable energy agency (ARENA), in spite of the former Abbott government’s attempt to scrap it, and a plan was announced last month to set up a ‘demand response’ trial, involving ARENA, AEMO (the energy market operator) and various retailers and other entities. This is about providing temporary supply during peak periods – do you have any more detail?

Jacinta: There’s a gloss on the demand response concept on a Feds website:

From Texas to Taiwan, demand response is commonly used overseas to avoid unplanned or involuntary outages, ease electricity price spikes and provide grid support services. In other countries, up to 15 per cent of peak demand is met with demand response.

Canto: So what exactly does it have to do with renewables?

Jacinta: Well get ready for a long story. It’s called demand response because it focuses on the play of demand rather than supply. It’s also called demand management, a better name I think. It’s partly about educating people about energy not being a finite commodity available at all times in equal measure…

Canto: Sounds like it’s more about energy conservation than about the type of energy being consumed.

Jacinta: That’s true. So on extreme temperature days, hot or cold – but mostly hot days in Australia – electricity demand can jump by 50% or so. To cope with these occasional demand surges we’ve traditionally built expensive gas-based generators that lie idle for most of the year. For reasons I’m not quite able to fathom, at such extreme demand times the ‘spot price’ for wholesale electricity goes through the roof – or more accurately it hits the ceiling, set by the National Energy Market at $14,000 per MWh. That’s just a bit more than the usual wholesale price, about $100/MWh. Demand management is an attempt to have agreements with large commercial/industrial users to reduce usage at certain times, or the agreements could be with energy retailers who then do deals with customers. Of course, bonuses could be handed out to compliant customers. The details of how this offsets peak demand usage and pricing are still a bit of a mystery to me, however.

Advertisements

Written by stewart henderson

December 9, 2017 at 9:07 pm

The battle for justice, part 1: some background to the case

leave a comment »

A prosecution should not proceed if there is no reasonable prospect of a conviction being secured. This basic criterion is the cornerstone of the uniform prosecution policy adopted in Australia.

from ‘The decision to prosecute’, in ‘Statement of prosecution policy and guidelines’, Director of Public Prosecutions, South Australia, October 2014

not this movie, unfortunately

I rarely focus on myself on this blog, but now I feel I have to. Today I lost my job because of something that happened to me about 12 years ago. So the next I don’t know how many posts will be devoted to my battle for justice, in the hope that it may help others in a similar situation. Of course I also find that writing is my best solace, as well as my best weapon. I have no financial resources to speak of, all I have is a certain amount of nous.

Between 2003-4 and 2010 I was a foster carer, under the aegis of Anglicare. Over that period I fostered six boys, with naturally varying success.

So why did I become a foster carer? I simply saw an ad on a volunteering website. I was being pushed to do some work, which I’ve always been reluctant to do, being basically a reclusive bookworm who loves to read history, science, everything that helps to understand what humans are, where they came from, where they’re going. And I hate when work interferes with that! But having come from what for me was a rather toxic family background, trying to shut myself from screaming fights between parents, and being accused by my mother, the dominant parent, of being a sneak and a liar, and ‘just like your father’ (her worst insult), and being physically and mentally abused by both parents (though never sexually), and having run away from home regularly in my teen years, I imagined that, as a survivor, I could offer something which might work for at least some of these kids  – a hands-off, non-bullying environment which would be more equal in terms of power than many foster-care situations. Call me naive…

Mostly, this approach worked. I did have to get heavy now and then of course, but not for long, so I always managed to stay on good terms with my foster-kids, as I have more recently with my students. This was even the case with the lad who accused me of raping him.

Let me describe the case as briefly as possible. A fifteen-year old boy was in my care in September 2005. He was much more of a handful than the previous two boys I’d looked after, and when I lost my temper with him during a school holiday trip in Victor Harbour, he took it out on me by claiming to his mother, with whom he spent his weekends, that I’d punched him on the back of the head. This was false, but his mother took the matter to the police, and the boy was immediately taken out of my care.

After an internal review conducted by Anglicare I was cleared of any wrongdoing, to their satisfaction at least, and another boy was placed in my care. Then, sometime in early 2006, this boy was secretly whisked out of my care, and I was informed by Anglicare that a serious allegation had been made against me. I was in shock, naturally thinking this new boy had also accused me of some kind of violence, but I was finally informed by the Anglicare social worker who’d been overseeing my placements that ‘it isn’t your new foster – kid’. The penny dropped more or less immediately that it was the same boy who’d accused me of hitting him. This boy, as far as I was aware, was now living happily with his mum.

I was left in limbo for some time, but eventually I received a message from the police to go to the Port Adelaide police station. There I was asked to sit down in an office with two police officers, and informed that I was under arrest for rape.

I was somewhat taken aback haha, and I don’t recall much of the conversation after that, but I think it went on for a long time. I do remember one key question: if the boy’s lying, why would he make such an allegation? I had no answer: I was unable to think clearly, given the situation. But later that night, after my release on bail, an answer came to me, which might just be the right one. When the boy was in my care, the plan was to reconcile him with his mother, who put him in care in the first place because she couldn’t cope with him. I knew his mother, as I met her every weekend for handover. She was highly strung and nervous, and it seemed likely she was again having trouble coping with full-time care. Quite plausibly, she was threatening to return him to foster care, which he wouldn’t have wanted. She allowed him to smoke, she allowed him to hang out with his mates, and her environment was familiar to him. To him, I would’ve seemed boringly bookish and unadventurous. What’s more, his claim that I’d hit him had worked perfectly for him, getting him exactly where he wanted. Why not shut the door on foster care forever, by making the most extreme claim?

I don’t really know if this sounds preposterous to an impartial reader, but this answer to the riddle struck me as in keeping with what I knew of the boy’s thinking, and it was backed up by a remark he made to me, which soon came back to haunt me. He said ‘my mum’s friend told me that all foster carers are child molesters…’. It was the kind of offhand remark he’d often make, but it was particularly striking in light of something I was told later by my lawyer. Apparently, the boy didn’t tell his mother directly that I’d raped him, he’d told a friend of his mother, who’d then told her.

So, after the sleepless night following my arrest, I felt confident that I knew the answer to the key police question. I typed it up and took it forthwith to the Port Adelaide station (I didn’t trust the mail). How utterly naive of me to think they’d be grateful, or interested! I received no response.

So I obtained a lawyer through legal aid, or the Legal Services Commission. At the time I was dirt poor: I’d received a stipend as a foster carer, but that had stopped. Otherwise I worked occasionally as a community worker or English language teacher, mostly in a voluntary role. From the moment I was charged I spent many a sleepless night imagining my days in court, heroically representing myself of course, exposing contradictions and confabulations, citing my spotless record, my abhorrence of violence of all kinds, etc, etc. So I was a bit miffed when my lawyer told me to sit tight and do nothing, say nothing, and to leave everything to him. Standard procedure, presumably. The case passed from hearing to hearing (I don’t know if that’s the word – at least there were several court appearances), over a period of more than a year, and every time I expected it to be dismissed, since I knew there was no evidence. It had to be dismissed, there could be no other possibility. The only reason it had become a court matter in the first place, it seemed to me, was the absolute enormity of the allegation. But how could this possibly be justified? But I had to admit, the boy had, more or less accidentally, stumbled on the perfect crime to accuse me of – a crime committed months before, where there could be no visible evidence one way or another… It was all very nerve-wracking. And I was very annoyed at the fact that the DPP (the Office of the Director of Public Prosecutions) seemed to have different lawyers representing it at every court appearance, and mostly they behaved as if they’d only been handed the brief minutes before.

Finally I arrived at the lowest point so far – an arraignment. I didn’t know this (my last) appearance would be an arraignment and I didn’t know what that was. I just expected yet another appearance with a handful of yawning court officials and lawyers in attendance. Instead I found a packed courtroom.

Arraignment is a formal reading of a criminal charging document in the presence of the defendant to inform the defendant of the charges against him or her. In response to arraignment, the accused is expected to enter a plea.

In Australia, arraignment is the first of eleven stages in a criminal trial, and involves the clerk of the court reading out the indictment. (WIKIPEDIA)

The reason the courtroom was packed is that several arraignments are processed in the same courtroom on the same day, so there were several accused there with their friends and families. Unfortunately, I was solo. On my turn, I was taken out to the holding cells and brought in – some kind of ceremonial – to the dock. The charge was read out (I’d already been given the ‘details’ by the lawyer, so I barely listened to it) and I was asked to plead, and the judge told the court, to my utter amazement, that I was adjudged to have a case to answer.

So it was perhaps even more amazing that, a week or two after that appearance, the case was dropped.

 


 

Written by stewart henderson

November 11, 2017 at 7:34 pm

on the explosion of battery research – part two, a bitsy presentation

leave a comment »

This EV battery managed to run for 1200 kilometres on a single charge at an average of around 51 mph

Ok, in order to make myself fractionally knowledgable about this sort of stuff I find myself watching videos made by motor-mouthed super-geeks who regularly do blokes-and-sheds experiments with wires and circuits and volt-makers and resistors and things that go spark in the night, and I feel I’m taking a peek at an alternative universe that I’m not sure whether to wish I was born into, but I’ll try anyway to report on it all without sounding too swamped or stupefied by the detail.

However, before I go on, I must say that, since my interest in this stuff stems ultimately from my interest in developing cleaner as well as more efficient energy, and replacing fossil fuel as a principal energy source, I want to voice my suspicions about the Australian federal government’s attitude towards clean and renewable energy. This morning I heard Scott Morrison, our nation’s Treasurer, repeating the same deliberately misleading comments made recently by Josh Frydenberg (the nation’s energy minister, for Christ’s sake) about the Tesla battery, which is designed to provide back-up power as part of a six-point SA government plan which the feds are well aware of but are unwilling to say anything positive about – or anything at all. Morrison, Frydenberg and that other trail-blazing intellectual, Barnaby Joyce, our Deputy Prime Minister, have all been totally derisory of the planned battery, and their pointlessly negative comments have thrown the spotlight on something I’ve not sufficiently noticed before. This government, since the election of just over a year ago, has not had anything positive to say about clean energy. In fact it has never said anything at all on the subject, by deliberate policy I suspect. We know that our PM isn’t as stupid on clean energy as his ministers, but he’s obviously constrained by his conservative colleagues. It’s as if, like those mythical ostriches, they’re hoping the whole world of renewables will go away if they pay no attention to it.

Anyway, rather than be demoralised by these unfortunates, let’s explore the world of solutions.

As a tribute to those can-do, DIY geeky types I need to share a great video which proves you can run an electric vehicle on a single charge for well over 1000ks – theirs made it to 1200ks – 748 miles in that dear old US currency – averaging around 51 mph. It’s well worth a watch, though with all the interest there are no doubt other claimants to the record distance for a single charge. Anyway, you can’t help but admire these guys. Tesla, as the video shows, are still trying to make it to 1000ks, but that’s on a regular, commercial basis of course.

In this video, basically an interview with battery researcher and materials scientist Professor Peter Bruce at Oxford University, the subject was batteries as storage systems. These are the batteries you find in your smart phones and other devices, and in electric vehicles (EVs). They’ll also be important in the renewable energy future, for grid storage. You can pump electricity into these batteries and, through a chemical process that I’m still trying to get my head around, you can store it for later use. As Prof Bruce points out, the lithium-ion battery revolutionised the field by more or less doubling the energy density of batteries and making much recent portable electronics technology possible. This energy density feature is key – the Li-ion batteries can store more energy per unit mass and volume. Of course energy density isn’t the only variable they’re working on. Speed of charge, length of time (and/or amount of activity) between charging, number of discharge-recharge cycles per battery, safety and cost are all vitally important, but when we look at EVs and grid storage you’re looking at much larger scale batteries that can’t be simply upgraded or replaced every few months. So Bruce sees this as an advantage, in that recycling and re-using will be more of a feature of the new electrified age. Also, as very much a  scientist, Bruce is interested in how the rather sudden focus on battery storage reveals gaps in our knowledge which we didn’t really know we had – and this is how knowledge often progresses, when we find we have an urgent problem to solve and we need to look at the basics, the underlying mechanisms. For example, the key to Li-ion batteries is the lithium compound used, and whether you can get more lithium ions out of particular compounds, and/or get them to move more quickly between the electrodes to discharge and recharge the battery. This requires analysis and understanding at the fundamental, atomistic level. Also, current Li-ion batteries for portable devices generally use cobalt in the compound, which is too expensive for large-scale batteries. Iron, manganese and silicates are being looked at as cheaper alternatives. This is all new research – and he makes no mention of the work done by Goodenough, Braga et al.

In any case it’s fascinating how new problems lead to new solutions. The two most touted and developed forms of renewable energy – solar and wind – both have this major problem of intermittence. In the meantime, battery storage, for portable devices and EVs, has become a big thing, and now new developments are heating up the materials science field in an electrifying way, which will in turn hot up the EV and clean energy markets.

The video ended by neatly connecting with the geeky DIY video in showing how dumped, abandoned laptop batteries and other batteries had plenty of capacity left in them – more than 60% in many cases, which is more than useful for energy storage, so they were being harvested by PhD students for use in small-scale energy storage systems for developing countries. Great for LED lighting, which requires little power. The students were using an algorithm to get each battery in the system to discharge at different rates (since they all had different capacities or charge left in them) so they could get maximum capacity out of the system as a whole. I think I actually understood that!

Okay – something very exciting! The video mentioned above is the first I’ve seen of a British series called ‘Fully Charged’, all about batteries, EVs and renewable energy. I plan to watch the series for my education and for the thrill of it all. But imagine my surprise when I started watching this one, still part of the series, made here in Adelaide! I won’t go into the content of that video, which was about flow batteries which can store solar energy rather than transferring it to the grid. I need to bone up more on that technology before commenting, and it’s probably a bit pricey for the likes of me anyway. What was immediately interesting to me was how quickly he (Robert Llewellyn, the narrator/interviewer) cottoned on to our federal government’s extreme negativity regarding renewables. Glad to have that back-up! I note too, by the way, that Australia has no direct incentives to buy EVs, of which there are few in the country – again all due to our troglodyte government. It’s frankly embarrassing.

So, there’s so much happening with battery technology and its applications that I might need to take some time off to absorb all the videos and docos and blogs and podcasts and development plans and government directives and projects and whatnot that are coming out all the time from the usual and some quite unusual places, not to mention our own local South Australian activities and the naysayers buzzing around them. Then again I may be moved to charge forward and report on some half-digested new development or announcement tomorrow, who knows….

References

They’re all in the links above, and I highly recommend the British ‘Fully Charged’ videos produced by Robert Llewellyn and Johnny Smith, and the USA ‘jehugarcia’ videos, which, like the Brit ones but in a different way, are a lot of fun as well as educational.

 

Written by stewart henderson

August 1, 2017 at 9:26 pm

on the preliminary report into the future of the NEM – part 1

leave a comment »

1481670998372

Australia’s Chief Scientist, Alan Finkel, who also happens to be a regular columnist for Cosmos, Australia’s premier science magazine, of which I’m a regular reader, has released his panel’s preliminary report on our national electricity market (NEM), and it has naturally received criticism from within the ranks of Australia’s conservative government, which is under pressure from its most conservative elements, led by Tony Abbott amongst others, who are implacably opposed to renewable energy.

The report confirms that the NEM is experiencing declining demand due to a range of factors, such as the development of new technologies, improved energy efficiency and a decline in industrial energy consumption. It makes a fairly reasonable assumption, but one unwelcome to many conservatives, that our electricity market is experiencing an unprecedented and irreversible phase of transition, and that this transition should be managed appropriately.

The NEM has been in operation for over 20 years, and the recent blackout here in South Australia (late September 2016) was its first real crisis. The issue as identified in the report is that variable renewable energy (VRE) sources are entering and complicating the market, which heretofore has been based on the synchronous generation of AC electricity at a standard system frequency. VRE generation is multiform and intermittent, and as such doesn’t sit well with the traditional system.

There are a number of other complicating issues. Improvements in building design and greater public awareness regarding emissions reduction have led to a decrease in overall energy consumption, while high peak demand on occasion remains a problem. Also the cost of electricity for the consumer has risen sharply in recent years, largely due to network investment (poles and wires). It’s expected that prices will continue to climb due to the closure of coal-fired power stations and the rising cost of gas. Interestingly, the report promotes gas as a vital energy source for this transitional period. It expresses concern about our overseas sales of gas, our low exploration rates, and negative attitudes to the fuel from certain states and territories. Rooftop solar systems, numbering more than 1.5 million, have further complicated the market, as the Australian Energy Market Operator (AEMO) understandably finds it difficult to measure their impact. System integration, which takes solar and wind energy system contributions into account, is clearly key to a successful NEM into the future.

The report also stresses Australia’s commitment to emissions reductions of 26-28% by 2030. It points out that business investors are turning away from fossil fuels, or what they call ’emission intensive power stations’, and financial institutions are also reluctant to back such investments. Given these clear signals, the report argues that a nationally integrated approach to a system which encourages and plans for a market for renewables is essential. This is clearly not what a backward-looking conservative government wants to hear.

So the report describes an ‘energy trilemma’: provision of high level energy security and reliability; affordable energy services for all; reduced emissions. More succinctly – security, affordability and the environment.

In its first chapter, the report looks at new technology. The costs of zero-emission wind turbines and solar PVs are falling, and this will maintain their appeal at least in the short term. Other such technologies, e.g. ‘concentrated solar thermal, geothermal, ocean, wave and tidal, and low emission electricity generation technologies such as biomass combustion and coal or gas-fired generation with carbon capture and storage’ (p13), are mentioned as likely technologies of the future, but the report largely focuses on wind and solar PV in terms of VRE generation. The effect of this technology, especially in the case of rooftop solar, is that consumers are engaging with the market in new ways. The penetration of rooftop solar in Australia is already the highest in the world, though most of our PV systems have low capacity. Battery storage systems, a developing technology which is seeing cost decreases, will surely be an attractive proposition for future solar PV purchasers. Electric vehicles haven’t really taken off yet in Australia, but they are making an impact in Europe, and the AEMO has projected that 10% of cars will be electric by 2030, presenting another challenge to an electricity system based largely on the fossil fuels such vehicles are designed to do without.

The management of these new and variable technologies and generators may involve the evolution of micro-grids as local resources become aggregated. Distributed, two-way energy systems are the likely way of the future, and an Electricity Network Transformation Roadmap has been developed by CSIRO and the Energy Networks Association to help anticipate and manage these changes.

In chapter 2 the report focuses on consumers, who are becoming increasingly active in the electricity market, which was formerly very much a one way system – you take your electricity from the national grid, you pay your quarterly bill. With distributed systems on the rise, consumers are becoming traders and investors in new forms of generation. The most obvious change is with rooftop PV. The national investment in these systems has amounted to several million dollars, with the expectation that individual households will be generating electricity more cleanly, more efficiently, and also more cheaply, notwithstanding the traditional electricity grid. Developments in battery storage and other technologies will inevitably lead to consumers moving off-grid, likely creating financial stress for those who remain. The possibilities for developing micro-grids to reduce costs will further complicate this evolving situation. Digital (smart) metering and new energy management software empower consumers to control usage. And while this is currently occurring mostly at the individual level, industrial consumers will also be keen to curb usage, creating added pressure for a more flexible and diverse two-way market. The report emphasises that the focus should shift more towards demand management in terms of grid security. One of the obvious problems from the point of view of consumers is that those on low incomes, or renters, who have little capacity to move off-grid (or desire in the case of passive users), may bear the burden of grid maintenance costs at increasing rates.

Chapter 3 deals with emissions. In reference to the Paris Agreement of 2015, which has been ratified by Australia, the report makes this comment which has been picked up by the media:

While the electricity sector must play an important role in reducing emissions, current policy settings do not provide a clear pathway to the level of reduction required to meet Australia’s Paris commitments.

The current Renewable Energy Target does not go beyond 2020 and national policy vis-à-vis emissions extends only to 2030, causing uncertainty for investors in an already volatile market. Clearly the report is being critical of government here as it has already argued for the primary role of government in developing policy settings to provide clarity for investment. The report also makes suggestions about shifting from coal to gas to reduce emissions at least in the short term. The report discussed three emissions reduction strategies assessed by AEMO and AEMC (Australian Energy Market Commission): an emissions intensity scheme, an extended large-scale renewable energy target, and the regulated closure of fossil-fuelled power stations. The first strategy is basically a carbon credits scheme, which was assessed as being the least costly and impactful, while an extended RET would provide greater policy stability for non-synchronous generation, so adding pressure to the existing grid system. Closure of coal-fired power stations would reduce low-cost supply in the short to medium term. Base load supply would be problematic in that scenario, so management of closures would be the key issue.

Chapter 4 looks at how VRE might be integrated into the system. It gets a bit technical here, but the issues are clear enough – VRE will be an increasing part of the energy mix, considerably so if Australia’s Large-scale renewable energy target is to be met, along with our international commitment vis-a-vis the Paris Agreement. However, VRE cannot provide spinning inertia or frequency control, according to the report. Basically this means that they cannot provide base load power, at a time when coal-fired power stations are closing down (nine have closed since 2012) and eastern states gas is being largely exported. The Hazelwood brown coal power station, Australia’s largest, and one of the most carbon intensive power stations in the world, will cease operation by April next year.

The difficulty with non-synchronous, distributed, intermittent and variable energy generation (e.g. wind and solar PV) is that these terms seem to be euphemisms for ‘not effing reliable’ in terms of base load, a problem currently being encountered in South Australia and likely to spread to other regions. The report identifies frequency control as a high priority challenge.

Frequency is a measure of the instantaneous balance of power supply and demand. To avoid damage to or failure of the power system the frequency may only deviate within a narrow range below or above 50 Hertz, as prescribed in the frequency operating standards for the NEM.

It’s likely that this narrow range of frequency proved a problem for South Australia when it suffered a blackout in September. I’ll look at what the report has to say about that blackout next time.

national electricity consumption - apparently on the rise again?

national electricity consumption – apparently on the rise again?

Written by stewart henderson

December 22, 2016 at 7:15 pm