a bonobo humanity?

‘Rise above yourself and grasp the world’ Archimedes – attribution

bird smarts and theory of mind

with 5 comments

human brain compared to that of a zebra finch, I think

I like birds a lot – how could you not? I particularly like their brains, which considering their ‘beautiful plumage’, their grace in flight, their songs, their treatment of mates and offspring and their dinosaur history, is quite a big call. Not that I’ve ever seen or examined a bird’s brain, but I’ve seen and heard of  some gobsmacking behaviour from some species, so I thought I might check out what’s known about their grey-white matter.

As with so many research fields, there’s been a surge in research into bird brains, and I’ve not heard the term bird-brain used as an insult in recent times. Still, when we think of bird intelligence, we tend to anthropomorphise, to compare them with us – do they play, do they use language or tools, do they recognise us individually, can they solve the same sorts of problems we can? That’s understandable enough, but in studying bird brains we should be just as thoughtful about the differences as the similarities.

The birds that have stood out for us so far are corvids – ravens, crows, jays and magpies, though many parrots such as the sadly endangered kea of New Zealand have also caught researchers’ attention. So how do these small-brained creatures manage to do the things that so impress us? Well for a start it may be more a matter of numbers than actual size (and it should be noted that birds have the largest brain to body ratio of any creature). Some research published in July 2016, which received a lot of media attention, found that bird brains pack neurons more densely than other animals. It was previously thought that neuron density didn’t vary much between species, but it’s now becoming clear this isn’t so, and actual brain size isn’t such a reliable guide to intelligence. But bird brains are really small compared to those of primates, so there must surely be other differences besides density.

But the 2016 research, which featured a revolutionary method for sampling brain tissue and making neuron counts, found that, in fact, a parrot brain contained as many neurons as some mid-sized primates. However, it’s also true that a bird’s brain is structurally different. Unsurprisingly, in the past, bird brains were thought of as primitive, and were classified as such, probably because they’re far removed from us on the evolutionary bush. Anthropomorphism again – understandably we used to feel that the only really intelligent creatures apart from us were those most closely related to us, but in recent decades we’ve learned that cetaceans, octopuses, elephants and birds, none of which are close to us  evolutionarily, are highly intelligent creatures. And they’re not all mammals, and in the case of the octopus, not even vertebrates. This is quite exciting for our understanding of intelligent life forms – they can have a multitude of ‘brain plans’.

The first important bird brain anatomist was the 19th century German naturalist Ludwig Edinger, whose work was so influential that it provided the orthodox view until a few decades ago. Noting the very different structure of the bird brain, Edinger understandably assumed they couldn’t be as smart as mammals, and being one of the first to name brain structures in birds, he assigned names such as paleostriatum, suggesting a very basic region involving instinctual and motor activity. Basically, he assumed birds lacked a neocortex altogether. However, we now know that the bird brain evolved from the pallium rather than the striatum, and in 2005 it was agreed that an overhaul of bird brain nomenclature was required. All part of our more informed and respectful approach to these wondrous creatures.

National Geographic, in combination with other interested organisations, has declared 2018 the Year of the Bird, and has some fascinating pieces on bird behaviour on its website. That’s where I learned that, according to one researcher, birds’ brains are more distributed ‘like a pizza’, whereas the mammalian brain is more layered. However, the wiring that underlies long-term memory in birds (and they clearly have impressive long-term memory) and decision-making is similar to that in mammals. 

Here are just a few of the extraordinary behaviours discovered. Green-rumped parrotlets of South America use calls as names for their chicks. Male palm cockatoos of New Guinea court females not only with calls but by drumming on hollow trees with twigs and seedpods – arguably a form of music. Goffin’s cockatoos, from Indonesia, make and use tools in captivity even though they’ve never been seen to do so in the wild. They’re also expert at opening locks. The National Geographic video ‘Beak and Brain: genius birds down under’ compares the kea of New Zealand’s South Island to the New Caledonian crow as problems solvers tasked with overcoming a variety of obstacles to obtain their favourite treats. It makes for riveting viewing. Other videos online show crows creating hooks on sticks and using them to pull food out of holes. 

Another video, involving experiments with jackdaws by Princess Auguste of Bavaria (really), a behavioural scientist, shows that these birds are much influenced by the gaze of humans, and can be directed to act simply by the gaze of a human they have bonded with. They also appear to know when they’re not being watched, and can act more boldly in such circumstances. All of this raises obvious questions, voiced by Auguste in the video. How do jackdaws think? How is it similar to the way we think? Do they recognise intentions? Do they have a theory of mind?

This theory of mind issue comes up with a lot of birds, and other animals. It refers to whether and to what extent a creature has the ability to attribute any or all of the variety of possible mental states to itself and/or others. The question of an avian theory of mind was explored in a study entitled ‘ravens attribute visual access to unseen competitors’. In describing their experiment, the authors highlight what they see – or what skeptics see – as a problem with much experimental work that tests for theory of mind in other species. This is the question – as I understand it – of whether the bird or animal actually ‘sees’ or reads what conspecifics are thinking, or is simply following particular observable cues. It was a complex experiment involving caching (hiding a store of food for later consumption, a common raven behaviour), peepholes that were either open or closed, and inference (by the researchers) from observed behaviour to either ‘minimal’ or ‘full-blown’ Theory of Mind. As a dilettante I found much of the discussion and analysis beyond me, but I found these remarks interesting:

In conclusion, the current experiment, together with the other recent studies on chimpanzees11,12, provides strong evidence against the skeptical hypothesis that the social cognition of nonhuman animals is limited to behaviour-reading. Peephole designs can allow researchers to overcome the confound of gaze cues, but further experimental work is needed to determine the specific limits of ravens and other animals—including humans—on such tasks.

In my general reading on these matters I’ve definitely found something like a rift between the skeptics on the behaviour of higher primates, dolphins and other ‘smart’ creatures, and those who have pushed, sometimes naively, other-life smarts with regard to ‘language’, memory and emotional intelligence. What I think needs to be kept clearly in mind is that in examining intelligence, or brain power or whatever, human intelligence may be only one of a possible infinity of gold standards. Is Theory of Mind itself an anthropomorphic concept, or one that lends itself too easily to anthropomorphic thinking? 

Meanwhile, experimentation and investigation of the neurological underpinnings of bird behaviour will continue, and I’ll be watching for the results. Just about to embark on Jim Robbins’ book The wonder of birds, and I hope to learn more especially about bird neurology in the future, and how it relates to birdsong. That’s a whole other issue.

Written by stewart henderson

November 2, 2018 at 9:40 am

5 Responses

Subscribe to comments with RSS.

  1. Thanks — very interesting. I live in the US and I swear that when I went to Japan the crows there said “KAH KAH” instead of “CAW CAW.””KAH” is a sound in the Japanese language while “CAW” is not. It’s conceivable that my own perception was altered but I think hearing the nearby human speech may have altered the “accent” of the crows. Of course, that would have to be verified in a much larger study but I wouldn’t be surprised if there was a tendency for imitative birds to be influenced by the human language community they are in.

    petersironwood

    December 10, 2018 at 4:27 pm

    • Sorry for not noticing this comment – my incompetence. As to the sounds, my guess is it was more your perception – I don’t think crows are imitative in the way parrots are. Then again, they may have different species in Japan with slightly different call sounds.

      stewart henderson

      December 18, 2018 at 4:06 pm

      • Could also be that the language the people end up using is somewhat influenced by the sounds that they hear around them. I suspect Hawaiian may lack certain sounds that are hard to hear over waves on the ocean. Maybe the crows in Japan sound different and that influenced the language. IDK.

        petersironwood

        January 6, 2019 at 12:58 pm

  2. Haha, I didn’t read my own blog pics, which says ravens at least are imitative of humans – so maybe you’re right.

    stewart henderson

    December 18, 2018 at 4:09 pm

  3. […] more standard is due as much to neurological research as to field ethology. I’ve written elsewhere about bird brains, and the transformative and ongoing research into them. Research has also found […]


Leave a Reply to petersironwoodCancel reply

Discover more from a bonobo humanity?

Subscribe now to keep reading and get access to the full archive.

Continue reading