an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

a DNA dialogue 5: a first look at DNA replication

leave a comment »

schematic of ‘replisome’ structures involved in DNA replication

 

Jacinta: So let’s scratch some more of the surface of the subject of DNA and genetics. A useful datum to remember, the human genome consists of more than 3 billion DNA bases. We were talking last time about pyrimidines and purines, and base pairs. Let’s talk now about how DNA unzips.

Canto: Well the base pairs are connected by hydrogen bonds, and the two DNA strands, the backbones of the molecule, run in opposite, or anti-parallel, directions, from the 5′ (five prime) end to the 3′ (three prime) end. So, while one strand runs from 5′ to 3′ (the sense strand), the other runs 3′ to 5′ (the antisense strand). 

Jacinta: Right, so what we’re talking about here is DNA replication, which involves breaking those hydrogen bonds, among other things. 

Canto: Yes, so that backbone, or double backbone whatever, where the strands run anti-parallel, is a phosphate-sugar construction, and the sugar is deoxyribose, a five-carbon sugar. This sugar is oriented in one strand from 5′ to 3′, that’s to say the 5′ carbon connects to a phosphate group at one end, while the 3′ carbon connects to a phosphate group at the other end, while in the other strand the sugar is oriented in the opposite direction. 

Jacinta: Yes, and this is essential for replication. The protein called DNA polymerase should be introduced here, with thanks to Khan Academy. It adds nucleotides to the 3′ end to grow a DNA strand…

Canto: Yes, but I think that’s part of the zipping process rather than the unzipping… it’s all very complicated but we need to keep working on it…

Jacinta: Yes, according to Khan Academy, the first step in this replication is to unwind the tightly wound double helix, which occurs through the action of an enzyme called topoisomerase. We could probably do a heap of posts on each of these enzymes, and then some. Anyway, to over-simplify, topoisomerase acts on the DNA such that the hydrogen bonds between the nitrogenous bases can be broken by another enzyme called helicase.

Canto: And that’s when we get to add nucleotides. So we have the two split strands, one of which is a 3′ strand, now called the leading strand, the other a 5′ strand, called the lagging strand. Don’t ask.

Jacinta: The leading strand is the one you add nucleotides to, creating another strand going in the 5′ to 3′ direction. This apparently requires an RNA primer. Don’t ask. DNA primase provides this RNA primer, and once this has occurred, DNA polymerase can start adding nucleotides to the 3′ end, following the open zipper, so to speak.

Canto: The lagging strand is a bit more complex though, as you apparently can’t add nucleotides in that other direction, the 5′ direction, not with any polymerase no how. So, according to Khan, ‘biology’ adds primers (don’t ask) made up of several RNA nucleotides.

Jacinta: Again, according to Khan, the DNA primase, which works along the single strand, is responsible for adding these primers to the lagging strand so that the polymerase can work ‘backwards’ along that strand, adding nucleotides in the right, 3′, direction. So it’s called the lagging strand because it has to work through this more long, drawn-out process.

Canto: Yes, and apparently, this means that you have all these fragments of DNA, called Okazaki fragments. I’m not sure how that works…

Jacinta: Let’s devote our next post on this subject entirely to Okazaki fragments. That could clarify a lot. Or not.

Canto: Okay, let’s. Goody goody gumdrops. In any case, these fragments can be kind of sewn together using DNA ligase, presumably another miraculous enzyme. And the RNA becomes DNA. Don’t ask. I’m sure all will be revealed with further research and investigation.

References

Leading and lagging strands in DNA replication (Khan Academy video)

https://www.quora.com/What-is-DNA-unzipping

https://www.yourgenome.org/facts/what-is-dna-replication

Written by stewart henderson

February 26, 2020 at 10:59 pm

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: