an autodidact meets a dilettante…

‘Rise above yourself and grasp the world’ Archimedes – attribution

Archive for the ‘neurology’ Category

Deep brain stimulation, depression and ways of thinking

leave a comment »

I read in a recent New Scientist that some progress has been made in using deep brain stimulation (DBS) to find associations between electrical brain activity and ‘mood’ or mood changes. This appears to mean that there’s an electrical ‘signal’ for happiness, sadness, anxiety, frustration, and any other emotion we can give a name to. And to paraphrase Karl Marx, the point is not to understand the brain, but to change it – at least for those who suffer depression, PTSD, bipolar disorder, epilepsy and a host of other debilitating disorders. So that we can all be happy clapping productive people…

So what is DBS and where is it heading? Apparently, electrodes can be implanted in specific brain regions to monitor, and in some cases actually change, ‘negative’ electrical activity. I use scare quotes here not to indicate opposition, but to highlight the obvious, that one person’s negativity may not be another’s, and that eliminating the negative also means eliminating the positive, as one means nothing without the other. Similar to the point that loving everyone means loving no-one. 

But I’m getting ahead of myself with these ethical matters. Here’s a simple overview of DBS from the Mayo Clinic:

Deep brain stimulation involves implanting electrodes within certain areas of your brain. These electrodes produce electrical impulses that regulate abnormal impulses. Or, the electrical impulses can affect certain cells and chemicals within the brain.
The amount of stimulation in deep brain stimulation is controlled by a pacemaker-like device placed under the skin in your upper chest. A wire that travels under your skin connects this device to the electrodes in your brain.

The most recent research translated neural signals into the mood variations of seven epilepsy sufferers who were fitted with implanted electrodes. The participants filled out periodic questionnaires about their mood, and clear matches were supposedly found between those self-reports and patterns of brain signals. Based on this knowledge, a decoder was built that would recognise particular signal patterns related to particular moods. It was successful in detecting mood 75% of the time. Brain patterns varied between participants, but were confined mainly to the limbic system, a network essential to triggering swings of emotion. 

I’m not sure if I should be overly impressed with a sample size of seven and a 75% success rate, but I do think that this research is on the right track, and there will be increasingly successful pinpointing of brain activity in relation to mood in the future, as well as other improvements, for example in the use of electrodes. Currently there’s an issue around the damaging long-term effects of implants, and non-invasive systems are being developed that can stimulate the brain from outside the skull. And of course there’s that next step, modulating those mood swings to ‘fix’ them, or to head them off at the pass.

All of this raises vital questions in relation to causes and treatments. If we focus on that most difficult but pervasive condition, depression, which so many people I know are medicating themselves against, it would seem that a brain-stimulation ‘cure’ would be less damaging than any course of anti-depressants, but it completely bypasses the question of why so many people are apparently suffering from this condition these days. Johann Hari has written a bestseller on depression, Lost Connections, which I haven’t read though I’ve just obtained a copy, and I’ve heard his long-form interview on Sam Harris’ Waking Up podcast. So I’ll probably revisit this issue more than once.

The medical establishment is more interested in treatment than in causes, and generally investigates causes only so as to refine treatments, but severe depression has proved difficult to treat other than with drugs which may have severe side-effects when used long-term. Clinicians have used terms such as treatment-resistant depression (TRD) and major depressive disorder (MDD) to characterise these conditions, which are on the rise worldwide, particularly in the more affluent nations. 

DBS first came to prominence as a promising treatment for movement disorders such as Parkinson’s disease and dystonia (which causes muscles to contract uncontrollably). It has since been used for more psycho-neurological ailments such as OCD, Tourette syndrome and severe, treatment-resistant addiction, with modest but statistically significant benefits. It has even shown promise in the treatment of some forms of dementia. Side-effects have been mostly confined to surgical procedures.

Clearly this type of treatment will improve with better targeting and increased knowledge of brain regions and their interactions, and in the case of MDD, which can be overwhelmingly debilitating, it offers much hope of a better life. But the question remains – why is depression increasing, and why in those countries that appear to offer a richer and more stimulating environment for their citizens? 

Hari’s title, Lost Connections, more than hints at his view of this, and in a recent conversation it was suggested to me that, in more subsistence societies, most people are too busy struggling to survive and keep their families alive and well to have the time to be depressed. This might seem a slap in the face to MDD sufferers (and I might add that the person making that suggestion is on anti-depressants), but surely there’s a grain of truth to it. I’ve often had travellers say to me ‘you should visit x, the people there have so little, yet they’re so happy and relaxed’. Is this a matter of ignorance being bliss? I recall, as a fifteen-year-old in one of the world’s most affluent and educated countries, wagging school and reading one of my brother’s economics textbooks – he was at university – and trying to get my head around the laws of supply and demand. It occurred to me that this might take years – but what about the other subjects that gripped me when I read about them? Astronomy, physics, ancient history, music, subjects that often had little to do with each other but which you could spend your whole lifetime immersed in. Not to mention other childhood ambitions that hadn’t been let go, to be a great sport star, or rock star, or latter-day Casanova…

This sense, cultivated in advanced societies, that you can achieve anything you set your mind to, can easily overwhelm when you’re faced with so many choices, and so many gaps in skill and knowledge between what you are and what you’d like to be, that it’s inevitable that sometimes you’ll feel flat, crushed by the weight of your own delirious hopes and expectations. This might be called a mood-swing, a symptom of depression, or even of bipolar disorder. All effort to climb that mighty mountain seems fruitless. The very thought of it sends you back to bed.

Such moods have overtaken me many times, but I’ve never called myself depressed, at least not in a clinical sense, and never sought medical advice or taken anti-depressant medication. I’ve occasionally been pressured to do so, because misery likes company, but I have a kind of basic stoicism which knows these moods will pass and that I should ‘rise above myself and grasp the world’ – a quote said to be from Archimedes, which is the new subtitle of my blog. 

The point here is that I think I have a sense of where all this depression is coming from, and it’s not just about a lack of connection. Nor is it, surely, all about low serotonin levels, or receptor malfunctions or other purely chemical causes. It’s so much more complicated than that. That’s to say it’s about all of these things but also about failure, the gap between the ideal and the real, the gap – in advanced countries – between the privileged rich and the disadvantaged poor, disillusionment, stress, grief, selfishness, the hope deferred that makes the heart sick…

So – back to DBS. Presumably this and other treatments have the same measure of success, which might be described as ‘improved functionality within the wider world’. Being able to hold down a job, hold a conversation, hold on to your partner, hold a baby without dropping it, etc. Of course, this is a worthwhile aim of any treatment, but what is actually happening to the brain under such a treatment? Neurologists might one day be able to describe this effectively in terms of dopamine levels and electrical activity, and the stimulation or becalming of regions of the nucleus accumbens and so forth, but on the level of thinking, dreaming, wondering, all those terms studiously avoided, or just ignored, by neurology (all for understandable reasons), what is happening? We don’t know. Treatment seems essentially a matter of dealing with functionality in the external world, and letting that inner world take care of itself. Is that the right approach? Something gained, but something lost? I really don’t know. 

Written by stewart henderson

December 18, 2018 at 2:27 pm

on luck, and improving environments

leave a comment »

Trump wasn’t born here, and neither was I

I’m in the process of reading Behave, by Robert Sapolsky, a professor of neurology and biology at Stanford University, who has tried in his book to summarise, via the research literature, the seconds, then minutes, then hours, then days, then lifetimes and more, that precede any particular piece of behaviour. It’s a dense but fascinating book, which aligns with, and provides mountains of evidence for, my view that we’re far less in control of ourselves than we think.

It seems we think this because of what might be called conscious awareness of our behaviours and our decisions. This consciousness is something we sometimes mistake for control. It’s interesting that we consider it obvious that we have no control over the size of our nose or the colour of our eyes, but we have more or less complete control of our temper, appetites, desires and ambitions. 

 Humanistically speaking, this understanding about very limited control needs to have massive implications for our understanding of others. We don’t get to choose our parents, our native country or the immediate environment that most profoundly affects our early life and much of our subsequent behaviour. The flow of hormones and neurotransmitters and their regulation via genetic and epigenetic factors proceed daily, hourly, moment by moment, and all we’re aware of, essentially, is outcomes. 

A lot of people, I note, are very uncomfortable about this kind of talk. For example, many of us want to treat each other as ‘equal before the law’. But is one person ever ‘equal’ with another? We know – it’s obvious – that we’re all different. That’s how we distinguish people, by their smiles, their voices, their fingerprints, their DNA. So how can we be different and equal at the same time? Or, to turn things around, how can a legal system operate if everyone is treated as different, unique, a special case?

Well, in a sense, we already do this, with respect to the law. No two bank robberies, or rapes, or murders are the same, and the judiciary must be highly attuned to the differences when applying punishments. Nowadays, and increasingly, the mental state of the offender – particularly at the time of the offence, if that can be ascertained – is considered when sentencing.  And this is surely a good thing. 

The question here is, considering the exponential growth of our neurophysiological knowledge in the 21st century, and its bearing on our understanding of every kind of negative or positive behaviour we engage in, how can we harness that knowledge to improve outcomes and move from a punitive approach to bad behaviours to something more constructive?

Of course, it’s one thing to identify the release or suppression of glucocorticoids, for example, and its effect on person x’s cognitive faculties, it’s entirely another thing to effect a remedy. And to what effect? To make everyone docile, ‘happy’ and law-abiding? To have another go at eugenics, this time involving far more than just genes? 

One of the points constantly hammered home in Sapolsky’s book is the effect of environment on everything that goes on inside us, so that, for example, genes aren’t quite as determinative as we once thought. Here are some key points from his chapter on genes (with apologies about unexplained terms such as epigenetic, transcription and transposons):

a. Genes are not autonomous agents commanding biological events.

b. Instead genes are regulated by the environment, with environment consisting of everything from events inside the cell to the universe.

c. Much of your DNA turns environmental influences into gene transcription, rather than coding for genes themselves; moreover, evolution is heavily about changing regulation of gene transcription, rather than genes themselves.

d. Epigenetics can allow environmental effects to be lifelong, or even multigenerational.

e. And thanks to transposons, neurons contain a mosaic of different genomes. 

And genes are only one component of the array of forces that influence or control our behaviour. We know, or course, about how Phineas Gage-type accidents and brain tumours can alter behaviour, but many other effects on the brain can alter our behaviour without us and others knowing too much about it. These include stress, malnutrition, and long-term cultural and religious influences which permanently affect our attitudes to, for example, women, other species and the food we eat. Domestic violence, drug use, political affiliations, educational outcomes and sexual affinities are all more inter-generational than we’re generally prepared to admit. 

The first thing we need to do is be aware of all this in our judgment of others, and even of ourselves. There’s just so much luck involved in being who we are. We could’ve been more or less ‘good-looking’ than we are -according to the standards of the culture around us – and this would’ve affected the way we’ve been treated throughout our whole lives. We could’ve been born richer or poorer, with more or less dysfunctional parents, taller or shorter, more or less mentally agile, more or less immune to the pathogens that surround us. On and on and on we could go, even to an extreme degree. We could’ve been born in Algeria, Argentina or Azerbaijan. We could’ve been born in 1912, 1412 or 512, or 150,000 years ago. We could’ve been born a mongoose, a mouse or a mosquito. It’s all luck, whether good or bad is up to us to decide, but probably not worth speculating about as we have no choice but to make the best of what we are.

What we do have is consciousness or awareness of what we are. And with that consciousness we can speculate, as we as a species always have, on how to make the best of ourselves, given that we’re the most socially constructed mammalian species on the planet, and for that reason the most successful, measured by population, spread across the globe, and what we’ve done for ourselves in terms of social evolution – our science, our technology, our laws and our politics.  

That’s where humanism comes in, for me. Since we know that ‘there but for the randomness of luck go I’, it surely follows that we should sympathise with those whose luck hasn’t been as lucky as our own, and strive to improve the lot of those less fortunate. Safe havens, educational opportunities, decent wages, human rights, clean environments, social networks – we know what’s required for people to thrive. Yet we focus, I think, too much on punishment. We punish people for trying to improve their family’s situation – or to avoid obliteration – by seeking refuge in safer, richer, healthier places. We punish them for seeking solace in drugs because their circumstances are too overwhelming to deal with. We punish them for momentary and one-off lapses of concentration that have had dire consequences. Of course it has always been thus, and I think we’re improving, though very unevenly across the globe. And the best way to improve is by more knowing. And more understanding of the consequences of that knowledge. 

Currently, it seems to me, we’re punishing people too much for doing what impoverished, damaged, desperate people do to survive. It’s understandable, perhaps, in our increasingly individualist world. How dare someone bother me for handouts. It’s not my fault that x has fucked up his life. Bring back capital punishment for paedophiles. People smugglers are the lowest form of human life. Etc etc – mostly from people who don’t have a clue what it’s like to be those people. Because their life is so different, through no fault, or cause, of their own. 

So to me the message is clear. Out lives would be better if others’ lives were better – if we could give others the opportunities, the health, the security and the smarts that we have, and if we could have all of those advantages that they have. I suppose that’s kind of impossible, but it’s better than blaming and punishing, and feeling superior. We’re not, we’re just lucky. Ot not. 

  

Written by stewart henderson

December 4, 2018 at 2:22 pm

embodied cognition: common sense or something startling? – part two. language and education

leave a comment »

hqdefault

Canto: There isn’t much detail in Lobel’s book about how sensations or the senses can be harnessed to education, but she tantalisingly offers this:

Several studies have shown that peppermint and cinnamon scents improved cognitive performance, including attention and memory; clerical tasks, such as typing speed and alphabetisation; and performance in video games.

Jacinta: Right, so we spray peppermint and cinnamon about the classroom, and genius rises. But is there anything in this approach specifically for language learning?

Canto: Well, a key insight, if you can call it that, of embodied cognition is that not only does the mind influence the body’s movements, but the body influences our thinking. And the relationship can be quite subtle. It’s known from neurophysiological studies that a person’s motor system is activated when they process action verbs, and when they observe the movements of others.

Jacinta: So that’s about mirror neurons?

Canto: Exactly. The basic take-away from this is that activating mirror neurons enhances learning. So as a teacher, combining gestures, or ‘acting out’ with speech to introduce new language, especially verbs, is an effective tool.

Jacinta: Playing charades, so that students embody the activity? This can be done with phrasal verbs, for example, which students often don’t get. Or prepositions. The teacher or students can act them out, or manipulate blocks to show ‘between’ ‘next to’, ‘in front of’, ‘under’, etc. This would be a useful strategy for low-level learning at our college, really engaging the students, but it would also help with higher level students, who are expected to write quite abstract stuff, but often don’t have the physical grounding of the target language, so they often come out with strange locutions which convey a lack of that physical sense of English that native speakers have.

Canto: Yes, they use transition signals and contrast terms wrongly, because they’re still vague as to their meaning. Acting out some of those terms could be quite useful. For example, ‘on the one hand/on the other hand’. You could act this out by balancing something on one hand, and then something of equal weight on the other hand, and speaking of equal weights and balancing in argument, and then getting the students to act this out for themselves, especially those students you know are likely to misconstrue the concept. ‘Furthermore’ could be acted out both by physically adding more to an argument and taking it further in one direction. ‘Moreover’ takes more over to one side. You could use blocks or counters to represent contrast words, a word or counter that shifts the argument to the opposite side, and to represent the additive words, with counters that accumulate the arguments on one side.

Jacinta: So this acting out, and gesturing, all this is very suggestive of the origins of language, which might’ve begun in gestures?

Canto: Yes it’s a very complex communicative system, which may well have begun with a complex gestural system, accompanied by vocalisations. Think of the complexity of signing systems for the deaf – it’s extraordinary how much we can convey through hand gestures accompanied by facial expressions and vocalisations, or even partial vocalisations or pre-vocalisations – lip movements and such. Other primates have complex gestural communisation, and it was in monkeys that mirror neurons were first discovered by neurophysiologists examining inputs into the motor cortex. They are the key to our understanding of the embodied nature of language and communication. When we learn our L1, as children, we learn it largely unconsciously from our parents and those close to us, by copying – and not only copying words, but gestures which accompany words. We absorb the physical framing of the language, the tone in which certain words are conveyed, words and phrases – locutions – associated with physical actions and feelings such as anger, sadness, humour, fear etc, and they fire up or activate neurons in the motor cortex as well as in those centres related to language processing.

Jacinta: I’ve heard, though, that there’s a competing theory about the origin and evolution of language, relating to calls, such as those made by birds and other animals.

Canto: Not just one other. This has been described as the hardest problem in science by some, and I’ve hardly scratched the surface of it, but I recently watched an interview with Giacomo Rizzolatti, whose team discovered mirror neurons in monkeys, and he strongly favours the gestural origin theory, though he also says we need more neurophysiological evidence, for example of mirror neurons in other areas of the brain, or the absence of them, before we decide once and for all. He finds the debate a little ideological at present.

Jacinta: Well the origin of language obviously involves evolution, but there are few traces discoverable from the past. Spoken language leaves no trace. So it’s always going to be highly speculative.

Canto: Well it may not always be, but it long has been that’s for sure. Apparently the Linguistic Society of Paris banned all present and future debate on the origins of language back in 1866, so we could get arrested for this post.

Jacinta: Yeah, a bit hard to enforce that one. So we have no idea about when human language evolved, or did it evolve gradually over hundreds of thousands of years?

Canto: Well, that’s more speculation, but there are continuity theories (language is this extremely complex thing that came together gradually with the accumulation of changes – mutations or brain-wirings – over an extended period), and there are discontinuity theories that favour, for example, a single transformative genetic mutation.

Jacinta: And what about the song theory – that’s one I’ve heard. That song, and therefore music, preceded language. I suppose that’s romantic speculation – right up our alley.

Canto: Okay so this is very interesting and something to follow up in future posts, but we should get back to our main subject, the implications of embodied cognition for language learning today.

Jacinta: Aren’t the implications fairly straightforward – that we learned language, that’s to say our L1 – in a thoroughly embodied way, within a rich sensory and physical context, as highly active kids, and so it’s a battle to get students to learn their L2 or another language, because neurons that fire together wire together, and there’s this thing called brain frugality which makes us always look for short-cuts, so we always want to convert the L2 into the familiar, wired-in L1, rather than trying to grasp the flow of a foreign language. We want to work in the familiar, activated channels of our L1. So, as teachers, we can help students to develop channels for their L2 by teaching in a more embodied way.

Canto: Here’s a thought – I wonder if we can measure teaching techniques for L2 by examining the active brain and the feedback mechanisms operating between cortices as students are being taught? Have we reached that level of sophistication?

Jacinta: I doubt it. It’s an intriguing thought though. But what exactly would we be measuring? How much of the brain is ‘lighting up’? How long it’s remaining lit up? And how would we know if what’s being activated is due to language learning? It could be active avoidance of language learning…

Canto: I need to learn much more about this subject. I’ve heard that you can’t and shouldn’t teach an L2 in the way we learn our L1, but what does that mean? In any case, it’s true that the way we teach, in serried rows, facing the front with too much teacher talk and a general discouragement of talking out of turn and even moving too much, it really does smack of an old dualist conception, with disembodied minds soaking up the new language from the teacher.

Jacinta: Well surely you don’t teach that way any more, shame on you if you do, but there are ways in which a more embodied approach can be used, with role-playing, framing and other forms of contextualising.

Canto: Yes, clearly contextualising and incorporating action, sensation and emotion into language teaching is the key, and getting students to use the language as often as possible, to learn to manipulate it, even if ungrammatically at times and with gestural accompaniment….

Jacinta: So, like learning L1? But we ‘pick up’ our L1, we absorb it like little sponges, together with context and connotation. Is that really how to learn an L2? Is the idea to replace the L1 with a thoroughly embodied L2? Or is it to have two – or more – fully embodied, firing-and-wired transmitting and feedback-looping  language systems alongside each other. What about energy conservation?

Canto: Okay so let this be an introductory post. I clearly need to research and think on this subject a lot more…

the brave new world of neurophenomenology, apparently

the brave new world of neurophenomenology, apparently

 

Written by stewart henderson

January 22, 2017 at 9:50 pm

why are our brains shrinking?

leave a comment »

my own brain, squeezed of alcohol

my own brain, squeezed of alcohol

Jacinta: So you know that the average human brain mass, or is it volume, has reduced by  – is it 15%, I can’t remember – over the past 20,000 years or so, right? And there’s this theory that it’s somehow related to domestication, because the same thing has happened to domesticated animals…

Canto: How so..?

Jacinta: Well, we don’t know how so, we just know it’s happened.

Canto: How do we know this? Who says?

Jacinta: Well I’ve heard about it from a few sources but most recently from Bruce Hood, the well-known psychologist and skeptic who was talking on the SGU about a recent book of his, The Domesticated Brain. 

Canto: So the idea is that humans have somehow domesticated themselves, in the same way that they’ve domesticated other species, with a corresponding decrease in brain mass in all these species, which signifies – what?

Jacinta: Well it raises questions, dunnit? What’s going on?

Canto: It doesn’t signify dumbing down though – I read in Pinker’s big book about our better angels that our average IQ is rising in quite regular and exemplary fashion.

Jacinta: Yes, the Flynn effect. Though of course what IQ measures has always been controversial. And they do reckon size isn’t the main thing. I mean look at all those small critters that display so many smarts. For example, rats, octopuses and corvids (that’s to say crows, ravens and some magpies). They all seem to be fast learners, within their limited spheres, and very adaptable. But getting back to the human brain, it seems to be something known mainly to palaeontologists, who have a variety of theories about it, including the ‘we’re getting dumber’ theory, but I’m not convinced by that one. It seems more likely that our brains are getting more organised, requiring less mass.

Canto: So this has happened only in the last 20,000 years?

Jacinta: Or perhaps even less – between 10 and 20 thousand.

Canto: Isn’t that a phenomenally short time for such a substantial change?

Jacinta: I really don’t know. They say it might be partly related to a decrease in overall body size, so that the brain to body ratio remains much the same.

Canto: A decrease in body size? What about the obesity epidemic? And I remember way back when I was a kid reading about how we’d been getting taller with each generation since the Great Depression – or was it the Industrial Revolution? Anyway our improved diet, our era of relative abundance, has led to a change in height, and presumably in mass, in only a few generations.

Jacinta: So now you’re saying that substantial changes can occur in a few generations, let alone 10,000 years?

Canto: Uhhh, yeah, okay, but I wasn’t talking about brain size.

Jacinta: Well why not brain size? Anyway, although there have been those recent changes, at least in the west, the story goes that the planet has warmed since the last ice age, favouring less bulky bodies, less fat storage, more gracile frames.

Canto: So what about domestication, why has this led to decreased brain sizes?

Jacinta: Well this is very complex of course…

Canto: I can think of a reason, though it might not be called domestication, more like socialisation, and outsourcing. You can see it in very recent times, with smart phones – it’s even become an already-stale joke, you know phones are getting smarter so we’re getting dumber. But then we always tend to exaggerate the short-term and the present against the longer view. And yet…. I was on the tram the other night, sitting across from this couple, locked into their phone screens, I mean really locked in, earplugs attached, heads bent, utterly fixated on their little screens, completely oblivious, of each other as well as of the outside world. I was reading a book myself, but I became distracted by my irritation with these characters, while wondering why I should be irritated. It just went on so long, this locked-in state. I leaned forward. I waved my hand in front of their bowed heads. I wanted to tell them that the tram had rattled past all the stations and was heading out to sea…

Jacinta: There are some problems with the whole argument. How do we know that domesticated animals have smaller brains? Domesticated cats have a wide range of brain sizes no doubt, but what wild cats are you comparing them with? Even more so with dogs and their immense varieties. Okay they’re descended from wolves so you compare a wolf brain with its modern doggy-wolfy counterpart, but who’s going to agree on type specimens?

Canto: So you brought the subject up just to dismiss it as a load of rubbish?

Jacinta: Well if we shelve the domestication hypothesis for the moment – I’m not dismissing it entirely – we might consider other reasons why human brains are shrinking – if they are.

Canto: So you’re not convinced that they are?

Jacinta: Well let’s be sceptical until we find some solid evidence. In this Scientific American site, from November 2014, palaeontologist Chris Stringer states that ‘skeletal evidence from every inhabited continent’ suggests – only suggests – that our brains have become smaller in the past 10 to 20 thousand years. No references are given, but the article assumes this is a fact. This piece from Discovery channel or something, which dates back to 2010, relies in part on the work of another palaeontologist, John Hawks, whose website we link to here. Hawks also talks about a bucketload of evidence, but again no references. The original research papers would likely be behind a paywall anyway, and barely intelligible to my dilettante brain….

Canto: Your diminishing brain.

Jacinta: Okay I’m prepared to believe Hawks about our incredible shrinking brains, but is domestication the cause, and what exactly is domestication anyway? Hawks doesn’t go with the domestication hypothesis. In fact the Discovery article usefully covers a number of alternative hypotheses, and of course the shrinking may be due to a combo. In fact that’s more than likely.

Canto: So what’s Hawks’ hypothesis, since we’re supposedly admirers of his?

Jacinta: Well Hawks decided to look more closely at this brain contraction – which is interesting because I was thinking along the same lines as he was, i.e. has it been a uniform contraction, or was there a sudden, quick development, followed by a stagnant period, as you would expect?

Canto: Anyway isn’t brain organisation more important than brain mass? Sorry to interrupt, but haven’t we already established that?

Jacinta: We haven’t established anything, we’re just effing dilettantes remember. Hawks started looking at more recent data, over the past 4000 years or so, to see if he could detect any difference in the encephalisation quotient (EQ) – the ratio of brain volume to body mass – over that time. He found that indeed there has. The picture is complicated, but overall there has been a reduction in the brain compared to the body. His explanation for this though is quite different. He reckons that a series of mutations over recent history have resulted in the brain producing more out of less…

Canto: Right, just as a series of modifications have allowed us to produce smaller but more powerful and fuel-efficient cars.

Jacinta: Uhh, yeah, something like that.

Canto: But we know what those modifications were, we can name them. Can we name the mutations?

Jacinta: Clever question, but we know about cars, we built them and they’ve only been around for a bit more than a century. We know vastly less about the brain and we’re still getting our heads around natural selection, give us a break. Hawks points out that it’s a rule about population genetics well-known in principle to Darwin, that the larger the population the more numerous the mutations, and there was a surge in the human population back when agriculture was developed and large settlements began to form. So a number of brain-related mutations led to streamlining and, as you suggest, fuel efficiency.

Canto: But isn’t this compatible with the domestication hypothesis? I imagine that, if there really is a brain reduction for domesticated animals, it’s because they don’t have to rely on their brains so much for survival, and we don’t either, the collective has sort of magically taken care of it through farming and infrastructure and supermarkets.

Jacinta: Yes but they all have their own complicated networks and issues we have to wrap our brains around. The domestication hypothesis is really about aggression apparently. The argument goes that all animals under domestication become more varied in size, coloration and general build, with a tendency to become more gracile over all. Selection against aggression, according to the primatologist Richard Wrangham, favours a slowly developing brain – one that is, in a sense, in a perpetually juvenile state (think of cute cat and dog videos). Of course, all this assumes that juvenile brains are less aggressive than adult brains, which some might see as a dubious assumption.

Canto: Yes, think of school bullying, Lord of the Flies, youth gangs, the adolescent tendency to extremes…

Jacinta: Well, both Wrangham and Hood offer a particularly interesting example of ‘super-fast’ domestication to illustrate their hypothesis:

In 1958 the Russian geneticist Dmitri Belyaev started raising silver foxes in captivity, initially selecting to breed only the animals that were the slowest to snarl when a human approached their cage. After about 12 generations, the animals evidenced the first appearance of physical traits associated with domestication, notably a white patch on the forehead. Their tameness increased over time, and a few generations later they were much more like domesticated dogs. They had developed smaller skeletons, white spots on their fur, floppy ears, and curlier tails; their craniums had also changed shape, resulting in less sexual dimorphism, and they had lower levels of aggression overall.

Now, how does this relate to juvenilism? Well, in the wild, offspring grow up quickly and have to fend for themselves, which requires a certain ruthless degree of aggression. Cats and dogs, yes, they abandon their offspring soon enough, but those offspring continue to be tutored, tamed, domesticated under their human owners. We hear a lot about school bullying and gangs of youths, but they’re actually the exception rather than the rule, or a last ditch rebellion against the domestication pressure that’s exerted by the whole of society, and they’ll either succumb to that pressure or end up in jail, or worse. It’s a bit like the Freudian concept of sublimation, you channel your aggressive energies into creativity, competitive problem-solving, sports achievements and the like.

Canto: So you’re in favour of the domestication hypothesis?

Jacinta: Well, I’m not against it. It sounds plausible to me. Human domestication, or self-domestication if you want to call it that, is a social-contract sort of thing. You agree to outsource and comply with certain arrangements – laws, government, taxation and so forth, in return for certain benefits in terms of security and resources. So you don’t have to fend for yourself. And that affects the brain, obviously. Though it might not be the whole story.

Written by stewart henderson

April 15, 2016 at 8:42 am

The philosophers want more power

leave a comment »

tamsin shaw

tamsin shaw

Canto: Well I suppose the apparent detection of gravitational waves should be capturing our attention more than anything else right now, but it’s very well described in The Economist, and in many other places, and we’re no astrophysicists, and we did promise to focus a bit more on philosophical issues, so…

Jacinta: But we’re no philosophers. But we’re philosophasters at least, so let’s have a go.

Canto: Well I came across an article on Three Quarks Daily which vaguely gave me the irrits, so with your help I want to explore why.

Jacinta: Right. The essay is called ‘The psychologists take power’, the author is Tamsin Shaw and it was originally published in the New York review of books.

Canto: Yes, and on reading it in full I find it an interesting but confused piece, which seems to take the failings of certain individual psychologists as an example of the failings of psychology as a whole, and even of neurology. Shaw seems to be entering the philosophy versus science debate, on the side of philosophy, but I don’t find her arguments convincing.

Jacinta: The essay seems to divide into two parts, first a general critique of psychology and neurology, which can be summed up by the title of a philosophical essay by Selim Berker, which she quotes approvingly, ‘the normative insignificance of neuroscience’. The second part is an account of how certain professional psychologists, practitioners of the ‘positive psychology’ pioneered by the influential Martin Seligman, colluded with the US government in providing dubious evidence for the psychological effectiveness of torture in eliciting valuable information from ‘enemies of the state’. Shaw clearly wants to link these unethical practices to what she might want to call ‘the normative insignificance of psychology’.

Canto: Yes, and it’s a bit of a dangerous game – you might as well label Heidegger’s allegiance to the Nazi party, or Althusser’s murder of his wife, as examples of ‘the normative insignificance of philosophy’.

Jacinta: Ha, well Althusser was declared insane at the time, no doubt by psychologists, who would be examining Althusser to determine whether he was, while strangling his wife, capable of understanding and following the normative rules of his society. Such determinations are hardly normatively insignificant, even though, no doubt, individual psychologists might make different determinations, due to levels of competence, corruption, ideological considerations and so forth.

Canto: Right, but let’s look more closely at Shaw’s essay, and pick it apart.

Jacinta: Okay, but first let’s make a philosophasters’ confession. Shaw mentions eight or so books or sources at the head of her essay, which form the basis of her discussion, but of those we’ve only read one – Pinker’s eloquent tome, The better angels of our nature. And we don’t intend to bone up on those other texts, though no doubt we’ll refer to our own reading in our responses.

Canto: And we are reasonably familiar with Jonathan Haidt’s work and ideas.

Jacinta: So Shaw begins her essay with the overweening ambition of behaviourist extraordinaire B F Skinner, a pretty soft target these days. I have no problems with criticising him, or Freud or any other psychologist whose theories get way out of hand. Shaw’s concerns, though, are specifically about the moral sphere. She feels that a new breed of psychologists, armed with neurological research, are making big claims about moral expertise. Here’s a quote from her essay:

Neuroscience, it is claimed, has revealed that our brains operate with a dual system for moral decision-making.

Canto: I like the ‘it is claimed’ bit. Claimed by who? Someone has put forward that hypothesis I’m sure, along with their reasons, but most neurologists bang on about neurology being a field in its infancy, and most findings are highly contested, it seems to me.

Jacinta: Shaw may be referring to the work of Daniel Kahneman – a psychologist not a neurologist – who distinguished between system 1 thinking (intuitive, less conscious, rough-and ready) and system 2 thinking (reasoned, conscious, more changeable depending on inputs and knowledge). But really there are many dual-process theories going back at least to William James. But Shaw is explicitly referring to the fMRI imaging work of the neurologist Jonathan Cohen, who analysed brain activity when subjects were asked to think about moral hypotheticals.

Canto: Yes and she’s quite straight about describing the two systems apparently highlighted by Cohen’s research and the brain regions associated with them, but becomes scathing in dealing with Joshua Greene, Cohen’s co-researcher, whom she quite deliberately introduces as a mere ‘philosophy graduate student’, whose interpretation of the research she describes thus:

Greene interpreted these results in the light of an unverifiable and unfalsifiable story about evolutionary psychology. Since primitive human beings encountered up-close dangers or threats of personal violence, their brains, he speculated, evolved fast and focused responses for dealing with such perils. The impersonal violence that threatens humans in more sophisticated societies does not trigger the same kind of affective response, so it allows for slower, more cognitive processes of moral deliberation that weigh the relevant consequences of actions. Greene inferred from this that the slower mechanisms we see in the brain are a later development and are superior because morality is properly concerned with impersonal values—for example, justice—to which personal harms and goals such as family loyalty should be irrelevant. He has taken this to be a vindication of a specific, consequentialist philosophical theory of morality: utilitarianism.

Jacinta: Okay, so here’s where psychology – especially evolutionary psychology – first comes under attack. It’s often said to present just so stories, which are necessarily highly speculative, as if they are facts. But I would question whether these speculations, or hypotheses, are unverifiable (forget about falsifiability, a term made popular by Karl Popper but which has come under heavy criticism since, both by scientists and philosophers of science, and I suspect Shaw has simply used it as a ‘double whammy’ to vilify Greene), to me they’re important and useful, and in any case are rarely presented as facts, at least not by the best psychologists.

Canto: So how do you verify this hypothesis, that fast, rough-and-ready responses for dealing with immediate dangers are systematically different from slower, more sophisticated responses that deal with the ‘impersonal violence’, the many restraints, justified or not, on our personal freedoms that we deal with on a daily basis?

Jacinta: Well one obvious way is through neurology, a scientific field still in its infancy as you say. Clearly the system 1 responses would be shared by other complex social mammals, whereas system 2 thinking is much more language-dependent and unique to humans – unless cetaceans have developed complex language, which is far from being out of the question. New techniques for mapping and exploring neural pathways are coming up all the time, as well as non-invasive ways of exploring such pathways in our closest mammalian relatives.

Canto: Good point. So to go to the second part of the above quote, Greene is presented (and I wonder about whether Shaw is fairly or accurately presenting him) as finding system 2 thinking as superior because it deals with more abstract and less personal values, whereas I would prefer to think of this system as a further adaptation, to a human existence that has become more socially complex, systematic and language-based. And in this, I’m apparently in line with the thinking of psychologists Shaw takes aim at:

Many of the psychologists who have taken up the dual-process model claim to be dismissive of philosophical theories, generally. They reject Greene’s inferences about utilitarianism and claim to be restricting themselves to what can be proved scientifically. But in fact all of those I discuss here are making claims about which kinds of moral judgments are good or bad by assessing which are adaptive or maladaptive in relation to a norm of social cooperation. They are thereby relying on an implicit philosophical theory of morality, albeit a much less exacting one than utilitarianism.

Jacinta: But I detect a problem here. You’ve talked about adaptation to the fact of growing social complexity, and the need to co-operate within that complexity. Shaw has written of a ‘norm of social co-operation’, by which she means an ethical norm, because she claims that this is the implicit philosophical theory of morality these psychologists rely on. But that’s not true, they’re not claiming that there’s anything moral about social complexity or social co-operation. We just are more complex, and necessarily more co-operative than our ancestors. So it’s kind of silly to say they’re relying on a less exacting moral philosophy than utilitarianism. It’s not about moral philosophy at all.

Canto: And it gets worse. Shaw claims that this phantom moral ethic of social co-operation is greatly inferior to utilitarianism, so let’s look at that normative theory, which in my view is not so much exacting as impossible. Utilitarianism is basically about the maximising of utility. Act in such a way that your actions maximise utility (act utilitarianism), or create rules that maximise utility (rule utilitarianism). So what’s utility? Nothing that can be measured objectively, or agreed upon. We can replace it with happiness, or pleasure, or well-being, or Aristotle’s eudaemonia, however translated, and the problem is still the same. How do you measure, on a large-scale, social level, things so elusive, intangible and personal?

Jacinta: Yes, and look at how laws change over time, laws for example relating to homosexuality, women’s rights, the protection of minorities, and even business practices, taxation and the like; they’re all about our changing, socially evolving sense of how to co-operate in such a way as to produce the best social outcomes. This can’t be easily bedded down in some fixed normative ethic.

Canto: Yes, Shaw seems to imply that some deep philosophical insight is missing from these psychologists which makes them liable to go off the rails, as the second half of her essay implies, but I’m very doubtful about that. But let’s continue with our analysis:

Rather than adhering to the moral view that we should maximize “utility”—or satisfaction of wants—they are adopting the more minimal, Hobbesian view that our first priority should be to avoid conflict. This minimalist moral worldview is, again, simply presupposed; it is not defended through argument and cannot be substantiated simply by an appeal to scientific facts. And its implications are not altogether appealing.

Jacinta: But surely she’s just assuming that ‘they’ – presumably all the psychologists she doesn’t like, or is it all the psychologists who posit a two-tiered system of decision-making? – take the view that avoidance of conflict is the highest priority.

Canto: Well I must say that Jonathan Haidt seems to take that view, and it’s something I find uncomfortable. So I agree with Shaw that Haidt ‘presupposes that the norm of cooperation should take precedence over the values that divide us’, and that this view is dubious. It’s just that I suspect my own view, that there are values more important than co-operation, is also a ‘presupposition’, though I dislike that word. But more of that later perhaps.

Jacinta: Right, so Shaw refers to the sinister implications of a minimalist Hobbesian worldview, supposedly held by these psychologists. What are they?

Canto: We’ll get there eventually – perhaps. Shaw describes the work of the ‘positive psychology’ movement, stemming from Martin Seligman and practised by Haidt among others, including Steven Pinker, whose book The better angels of our nature was apparently influenced by this movement:

In that extremely influential work Pinker argues that our rational, deliberative modes of evaluation should take precedence over powerful, affective intuitions. But by “rationality” he means specifically “the interchangeability of perspectives and the opportunity the world provides for positive-sum games,” rather than any higher-order philosophical theory. He allows that empathy has played a part in promoting altruism, that “humanitarian reforms are driven in part by an enhanced sensitivity to the experiences of living things and a genuine desire to relieve their suffering.” But nevertheless our “ultimate goal should be policies and norms that become second nature and render empathy unnecessary.”

And here’s where I see another problem. Pinker is here criticised for not subscribing to any ‘higher-order philosophical theory’, but Shaw doesn’t attempt to outline or give examples of such higher-order theories, though she does refer to empathy – an important factor, but one that doesn’t obviously emerge from philosophy.

Jacinta: Right, and we’ve already referred to utilitarianism and its problems. This reminds me that years ago  I read a sort of primer on ethics, I think it was called Moral Philosophy, in which the author devoted chapters to utilitarianism, Kantianism, rights theory and other ethical approaches. In the final chapter he presented his own preferred approach, a sort of neo-Aristotelianism. I was intrigued that he felt we hadn’t made much progress in philosophical ethics in almost 2,500 years.

Canto: Well, his may be a minority view, but it’s doubtful that our changing laws derive from philosophical work on normative ethics, though this may have had an influence. I do think, with Haidt, that there’s a great deal of post-hoc rationalisation going on, though I’m reluctant – very reluctant actually – to embrace the relativism of values. And this brings me to the nub of the matter, IMHO. To go back to an old favourite of mine, Hume: ‘reason is and ought only to be the slave of the passions’. A fairly notorious pronouncement, but I take the passions here to be something very basic – the fundamental drives and instincts, largely unconscious, that characterise us as humans…

Jacinta: But doesn’t Hume break his own is-ought rule here? He says that our passions rule our reason, which may or may not be true, but does it follow that they ought to?

Canto: Please don’t complicate matters. Hume also wrote this, in An Enquiry Concerning the Principles of Morals:

In all determinations of morality, this circumstance of public utility is ever principally in view, and wherever disputes arise, either in philosophy or common life, concerning the bounds of duty, the question cannot, by any means, be decided with greater certainty, than by ascertaining, on any side, the true interests of mankind.

So these true interests of mankind…

Jacinta: Hang on, so there he goes again, gaily bounding over his own is-ought barrier, saying that in order to work out what we ought to do we need – pretty well absolutely – to determine our interests, what in fact makes us human, what we actually are.

Canto: Well, precisely…

Jacinta: Or what we have evolved to become, which might amount to the same thing. So we need to study our evolution, our genes and genetic inheritance, our brain and its inheritance, and adaptive growth, and maybe the physics of our bodies…

our old Scottish mate Davey Hume, doyen of skeptics, whose is-ought distinction has been widely misinterpreted, we suspect

our old Scottish mate Davey Hume, doyen of skeptics, whose is-ought distinction has been widely misinterpreted, we suspect

Canto: So we need neurology, and genetics, and palaeontology, and physics and psychology, all of which contribute to an understanding of what we are. Without them, normative ethics would be empty theorising.

Jacinta: So I suppose you’re going to write a rejoinder to this ‘normative insignificance of neurology’ essay? Something like ‘the insignificance of normative ethics without neurology’?

Canto: Ha, well that would require reading Selim Berker’s essay, which I’m not sure about – so many other things to explore. But I should end this discussion by saying a few words about the second half of Shaw’s article – and I’ll pass over many other points she’s made. This section deals with the collusion of some psychologists, practitioners of the above-mentioned ‘positive psychology’, with the CIA and the US Department of Defence in the commission of torture.

Jacinta: And what exactly is this ‘positive psychology’?

Canto: Well, to explain that would require a large digression. Suffice to say for now that it’s about using psychology to make us more resilient, and in some sense ethically superior, or more benign, humans. Shaw dwells on this at some length, but claims that in spite of much rhetoric, these psychologists can only offer what she calls the bare, Hobbesian ethic of avoidance of strife. However, she herself is unable to point to a more robust, or a deeper, ethic. She presumably believes in one, but she doesn’t enlighten us as to what it might be. And this is very striking because the tale of these psychologists’ collusion with the Bush administration  on torture, and the huge financial gain to them in applying ‘learned helplessness’, a theory of Seligman’s, to the application of torture, is truly shocking.

Jacinta: So it would be a question of what, in their make-up, allowed them to engage in such unethical behaviour, and was it the lack of a deep ethical understanding, beyond ‘bare Hobbesianism’?

Canto: Right, and my answer would be that, although two psychologists took up this lucrative offer to ‘serve the state’, there would have been others who refused, and would any of them, on either side, have made their decision on the basis of some rigorous normative ethic?

Jacinta: I’m quite sure I wouldn’t have colluded with that sort of thing for all the terracotta warriors in China, but I’m also sure it wouldn’t have been for deep philosophical reasons. I just have a kind of visceral revulsion for physical violence and bullying as you know, and I wouldn’t be able to live with myself if I’d facilitated the premeditated cruel and unusual punishment of others. I’m not even sure if it’s about empathy, but it’s not a particularly reasoned position.

Canto: Yes, and so the only way to understand why some people are more prone to do unethical things – actions outside of the ever-changing standards of community ethics – might be to look at individual psychology, and neurology, and genetics, which takes us further away from normative ethics than ever.

Jacinta: Yes, and didn’t we read, in Sam Kean’s The tale of the duelling neurosurgeons, about a poor fellow in his mid-fifties who suddenly started engaging in paedophile acts, something he had never showed any signs of before? A brain scan revealed a large tumour pressing on parts of the brain responsible for higher-order decision-making (to put it over-simplistically). When the tumour was removed he returned to ‘normal’, until some time later he regressed to paedophile acts. A further scan showed they didn’t remove all the tumour and it had regrown. After another more successful operation he was cured and never diddled again. But the consequences of his actions for his victims when ‘not himself’ would have required him to be punished, on a consequentialist ethical view, wouldn’t they?

Canto: Very good point. And yet, and yet… can it be true that we’ve barely gone further in our ethics than the Golden Rule, or Aristotle’s mean between extremes?

Jacinta: We’re animals, don’t forget. Okay we’re animals that have managed to detect waves from space that are a tiny fraction of the diameter of a proton, but we’re still not that good at being nice to each other. And the extent to which we’re able to be nice to each other, and follow social norms, that’s a matter of our individual psychology, our neurology, our individual and cultural circumstances, our genes and our epigenetic profile, so much particular stuff that philosophical ethics, with its generalities, can’t easily deal with.

Written by stewart henderson

February 26, 2016 at 8:37 am

women and men: un discours sans fin

leave a comment »

Angel and Devil

Jacinta: Okay Canto, I rather hesitate to open up this subject, because I can’t see an end to it, but I want you to repeat here something you’ve said to me before about women and power, which goes to differences between men and women, an area subject to endless debate and contestation.

Canto: Ah well, I was considering how political power, in the world, is largely in the hands of men, and what the world would be like if the situation was reversed. It’s my humble opinion that the world would be less violent, more collaborative, and a lot more fun.

Jacinta: Well as a woman I’m obviously pleased to hear you say that, but we do try to look at evidence rather than personal opinion here, so what in the way of evidence leads you to this conclusion?

Canto: Well… where do we begin? Simone de Beauvoir famously wrote that women are made and not born, a highly contestable truism as it seems that women are actually wired differently from men, having less neurons but more connections between neurons, in toto and on average, so the very question of what it means to be a woman, or a man is one we’re unlikely to get to the bottom of, but I’d like to start with bonobos, always a favourite topic of mine. They appear to have diverged from chimpanzees only between a million and two million years ago, and they look very similar to chimps, which is likely why they weren’t identified as a separate species until the 1930s, and the differences seem to be far more social than anatomical. I mean, they share the same sexual dimorphism as chimps, and humans, and yet they’re essentially matriarchal, due it seems to social arrangements rather than individual size and strength. That gives me great hope for humans, especially now that physical size and strength are less relevant than ever as leadership qualities.

Jacinta: Ah, well now I get the fun part – you think a human matriarchal society will turn out to be a gigantic mutual wankfest. But what about civilisation? What about science and technology? Considering that women, regardless of culture or nationality, are more into astrology, fortune-telling, spiritualism, religion, naturopathy, and virtually every other pseudo-science and primitivism you care to mention, than men are.

Canto: Well, you’re talking about statistical differences, but you well know that there are many fine female astrophysicists, neurosurgeons, geneticists, experimental psychologists, whatever. You’re hardly the only female skeptic, even if they’re in a minority. And who knows what would happen if females were in a majority, with a history of being in a majority, with respect to leadership and power? Maybe you’d find then that it was men who were more into pseudo-science, statistically speaking.

Jacinta: True, and that brings me to a study analysed on the Skeptics’ Guide to the Universe recently. I had read, like you, that women, overall, had more white matter (the myelinated connections between neurons) than men – by a large factor, and that men had more grey matter, though this was concentrated around particular areas such as the amygdalae and the hypothalamus. However, in the study referred to, the researchers wanted to find if there were any categorical differences between male and female brains. They looked at 4 data sets of MRI and fMRI scans, checking out anatomical and connectional or networking differences, to make comparisons. According to SGU’s Steven Novella (a practising neurologist), the media over-simplified the findings as saying there were no differences, but in fact it was more interesting than that. Novella found this study to be essentially an exercise in examining how we categorise things (how do we define and categorise a disease, for example, or a planet, or a species). How we do so depends on a range of factors, and increasing knowledge, and better technology, helps us to develop parameters for categorising…

Canto: Though this also raises more problems… the more we know or learn, the more problematic our previous categories tend to become…

Jacinta: Anyway, in the case of female and male brains, the researchers distinguished between categorical differences and statistical differences. They used genitalia as a categorical difference. As Novella explains it, with genitalia we have a bimodal system, with male and female equipment…

Canto: I prefer to call it tackle…

Jacinta: And nothing really between. The vast majority of people, as subjects, can be placed in one category or another. Of course there are exceptions, but they are, always arguably, statistically insignificant. So, using this as a yardstick, the researchers wanted to know if there are categorical differences between male and female brains in the same way that there are categorical differences between male and female genitalia. One way to distinguish between categorical and statistical differences is whether, once you know which category an individual belongs to, that provides certainty about their particular traits. If it does, you have a categorical difference. So the researchers looked at about 40 different anatomical and functional aspects of the brain. They found that, generally speaking, there are statistical differences between males and females, in the size of various regions, the richness of the networks in various regions, but with a lot of overlap between the sexes; so it was statistical but not categorical. And the study didn’t look at causes of these differences, whether biological or social (we know that brains can be wired up through social conditioning to some degree). But they also did studies of individuals over the range of the 40 anatomical and functional features to determine how many were ‘typically’ male or female, or somewhere in between. One way to capture this was to ask – what percentage of people had 100% of their brain regions (those 40 features analysed) that were ‘typical’ of their sex? Among the 4 data sets, that percentage was 0 to 8%. So, very few men have ‘all-male’ brain regions, in terms of size and connections. Some 28% to 58% had a mixture of both.

Canto: So let me get this clear, the essential finding, according to Novella, was that though there were statistical differences in specific brain areas – and these are the differences described in ‘Do men and women have different brains?’ in How Stuff Works, from which the new ussr’s earlier post was largely derived – there is a lot of individual variation, which muddies the water rather a lot.

Jacinta: Yes, and I would say hopelessly, at least for those who want to think in stereotypes. As Novella puts it, people are mosaics of male and female traits. Another way of thinking about this, again put succinctly by Novella, is that we can’t assume that because a person is male – or female – we know what that person’s brain regions will be like. Statistical differences can’t automatically tell us about the brain region of any individual. There is no typically male or female brain in the way that there are typically male or female genitalia. And that is really interesting, and it might even mean that it’s illegitimate to say, ‘oh she’s female but she thinks like a man’, or ‘but she has a male brain’. There’s no male brain, or female brain, there are individual brains that are a product of all the influences, genetic, epigenetic, environmental, social, hormonal, psychological, whatever you can think of that influences brain activity and wiring.

Canto: And yet, and yet. Statistical differences do count for something don’t they? We still have the statistics showing that women are more into astrology and naturopathy than men…

Jacinta: Yes but what this study shows is that you can’t base this on some essentialist argument about female brains, and isn’t that a good thing?

Canto: Well, definitely, but then it works the other way. My argument that if women ruled we’d be so much better off can’t be based on anything essentialist either! Maybe being in power would turn their brains into something  like the statistically typical male brain. My hopes are turning to dust…

Jacinto: No, no, don’t despair Canto. Consider the bonobos of the jungle…

MM7994_110120_05472-596x397

Written by stewart henderson

December 20, 2015 at 11:42 pm

Posted in brain, gender, genetics, ideology, neurology, sex

Tagged with , ,

distributed consciousness – another nail in the coffin of human specialness

leave a comment »

onlinePoster6.jpg

for more on this, the whole conference is available online

I wrote a piece here called ‘Animals R Us’ a few years ago because I was annoyed at certain contemptuous remarks directed at animals – a rather large set to be contemptuous of – and also because I’ve always disliked the idea of human specialness so beloved of some of our religious co-habitants. I was also thinking of the remarks of Marilyn Robinson on consciousness, which I critiqued even more years ago. Atheists, she argued (wrongly) don’t take enough account of consciousness (with the inference that if they did, they’d be more accepting of a supernatural being, presumably). So I’m happy to briefly revisit the complexities and the consciousness of non-humans here.

The latest research reveals more and more the distributed nature of consciousness, and some of this research is summarised in ‘Triumph of the zombie killers’, chapter 1 of Michael Brooks’s book At the edge of uncertainty: 11 discoveries taking science by surprise. He brings up philosopher David Chalmers’s 20-year-old claim about the ‘hard problem’ of consciousness, that it doesn’t appear to be reducible to material processes. In fact, Chalmers went further, saying ‘No explanation given wholly in physical terms can ever account for the emergence of conscious experience.’ Well, forever is a long long time and I wonder what Chalmers would have to say now (I’ll have to check out his more recent pronouncements). In 1994 he used a zombie analogy, suggesting that you couldn’t know whether we were surrounded by zombies, or ‘pretend’ humans, since the sense of self-awareness essential to consciousness cannot be identified or described by methodological naturalism. It’s been difficult to provide a coherent theory to account for this subjective feeling, and Daniel Dennett took the view a couple of decades ago that consciousness is essentially an illusion, or rather an evolved way of dealing with the world which captures the elements of reality we need to get by, and then some. That’s why we can so often be fooled by our brains. We have perceptual glitches and blind spots. An obvious example is the human eye, which only focuses sharply on a tiny area, using the fovea centralis, a patch of densely packed photoreceptor cells only a millimetre in diameter. The rest of our visual field is seen in much lower resolution, and without colour. But we’re not aware of this because of the eye’s movements, or saccades, which average 3 per second. The time between one sharp focus and the next is ‘blacked-out’ of consciousness, creating an illusion of seamlessly moving vision. The analogy with film is obvious.

This evolved use of sight to be ‘good enough’ helps explain our ‘change blindness’, which has been highlighted by a number of recent experiments, and which has been exploited for decades by professional magicians. It also helps explain why we don’t notice mistakes in editorial continuity in films, which are even overlooked by editors, because they involve ‘irrelevant’ background details. This evolved use of eyesight to help us to make enough sense of the world as we need to, as economically as possible, is something shared by many other creatures, as researchers have declared. Consciousness researchers gathered together at Cambridge in July 2012 and issued a ‘declaration on consciousness’, summarising recent findings on consciousness in non-human animals and in infant humans:

Non-human animals have the neuroanatomical, neurochemical, and neurophysiological substrates of conscious states along with the capacity to exhibit intentional behaviours… humans are not unique in possessing the neurological substrates that generate consciousness. Non-human animals, including all mammals and birds, and many other creatures, including octopuses, also possess these neurological substrates

It’s a vitally important point that’s being made here. Even to call consciousness an emergent property is misleading, as it suggests that we’re still hung up on the consciousness label, and on detecting the point at which this phenomenon has ‘emerged’. Previous tests for consciousness are gradually being found wanting, as what they test has little to do with the more expansive understanding of consciousness that our research is contributing to, more and more. What’s more, serious damage to, and indeed the complete loss of, such areas of the human brain as the insular cortex, the anterior cingulate cortex, and the medial prefrontal cortex, all vital to our self-awareness according to previous research, haven’t prevented subjects from articulating clear signs of consciousness and self-reflection. There’s no ‘place’ of consciousness in the human or mammalian brain, and signs of intentionality and individual personality are cropping up in a whole range of species.

Early researchers on chimpanzees and other highly developed animals were often dismissive of claims that they were being cruel, citing ‘anthropomorphism’ as a barrier to scientific progress. We can now see that we don’t have to think of animals as ‘human-like’ to recognise their capacity for suffering and a whole range of other negative and positive experiences and emotions. And we’re only at the beginning of this journey, which, like the journey initiated by Copernicus, Kepler and others, will take us far from the hubristic sense of ourselves as singular and central.

Written by stewart henderson

July 29, 2015 at 10:05 am