a bonobo humanity?

‘Rise above yourself and grasp the world’ Archimedes – attribution

Posts Tagged ‘supergrids

some stuff on super-grids and smart grids

leave a comment »

In a recent New Scientist article, ‘The rise of supergrids’, I learned that Australia is among 80 countries backing a project, or perhaps an idea for a project, launched at COP26 in Glasgow, called One Sun One World One Grid, ‘a plan to massively expand the reach of solar power by joining up the electricity grids of countries and even entire continents’. My first reaction was cynicism – Australia’s successive governments have never managed to come up with a credible policy to combat global warming or to develop renewable energy, but they love to save face by cheering on other countries’ initiatives, at no cost to themselves.

Our state government (South Australia) did invest in the construction of a giant lithium ion battery, the biggest of its kind at the time (2017), built by Tesla to firm up our sometimes dodgy electricity supply, and, to be fair, there’s been a lot of state investment here in wind and solar, but there’s been very little at the national level. 

At the global level, the Chinese thugocracy has been talking up the idea of a ‘global energy internet’ for some years – but let’s face it, the WEIRD world has good reason not to trust the CCP. Apparently China is a world leader in the manufacture and development of UHVDC (ultra-high voltage direct current) transmission lines, and is no doubt hoping to spread the algorithms of Chinese technological and political superiority through a globe-wrapped electrical belt-and-road. 

But back in the WEIRD world, it’s the EU that’s looking to spearhead the supergrid system. It already has the most developed international system for trading electricity, according to the Financial Review. And of course, we’re talking about renewable energy here, though an important ancillary effect would be trade connections within an increasingly global energy system. There’s also an interest, at least among some, in creating a transcontinental supergrid in the US. 

Renewable sources such as solar and wind tend to be generated in isolated, low-demand locations, so long-distance transmission is a major problem, especially when carried out across national boundaries. Currently the growth has been in local microgrids and battery storage, but there are arguments about meshing the small-scale with the large scale. One positive feature of a global energy network is that it might just have a uniting effect, regardless of economic considerations. 

But of course economics will be a major factor in enticing investment. Economists use an acronym, LCOE, the levelized cost of electricity, when analysing costs and benefits of an electrical grid system. This is a measure of the lifetime cost of a system divided by the energy it produces. The Lappeenranta University of Technology in Finland used this and other measures to analyse the ‘techno-economic benefits of a globally interconnected world’, and found that they would be fewer than those of a national and subnational grid system, which seems counter-intuitive to me. However the analysts did admit that a more holistic approach to the supergrid concept might be in order. In short, more research is needed. 

Another concept to consider is the smart grid, which generally starts small and local but can be built up over time and space. These grids are largely computerised, of course, which raises security concerns, but it would be hard to over-estimate the transformative nature of such energy systems.

Our current grid system was pretty well finalised in the mid-twentieth century. It was of course based on fossil fuels – coal, gas and oil – with some hydro. The first nuclear power plant – small in scale – commenced operations in the Soviet Union in 1954. With massive population growth and massive increases in energy demand (as well as a demand for reliability of services) more and more power plants were built, mostly based on fossil fuels. Over time, it was realised that there were particular periods of high and low demand, which led to using ‘peaking power generators’ that were often switched off. The cost of maintaining these generators was passed on to consumers in the form of increased tariffs. The use of ‘smart technology’ by individuals and companies to control usage was a more or less inevitable response. 

Moving into the 21st century, smart technology has led to something of a battle and an accommodation with energy providers. Moreover, combined with a growing concern about the fossil fuel industry and its contribution to global warming, and the rapid development of variable solar and wind power generation, some consumers have become increasingly interested in alternatives to ‘traditional’ grid systems, and large power stations, which can, in some regions, be rendered unnecessary for those with photovoltaics and battery storage. The potential for a more decentralised system of mini-grids for individual homes and neighbourhoods has become increasingly clear.   

Wikipedia’s article on smart grids, which I’m relying on, is impressively fulsome. It provides, inter alia, this definition of a smart grid from the European Union:

“A Smart Grid is an electricity network that can cost efficiently integrate the behaviour and actions of all users connected to it – generators, consumers and those that do both – in order to ensure economically efficient, sustainable power system with low losses and high levels of quality and security of supply and safety. A smart grid employs innovative products and services together with intelligent monitoring, control, communication, and self-healing technologies in order to:

  1. Better facilitate the connection and operation of generators of all sizes and technologies.
  2. Allow consumers to play a part in optimising the operation of the system.
  3. Provide consumers with greater information and options for how they use their supply.
  4. Significantly reduce the environmental impact of the whole electricity supply system.
  5. Maintain or even improve the existing high levels of system reliability, quality and security of supply.
  6. Maintain and improve the existing services efficiently.”

So, with the continued growth of innovative renewable energy technologies, for domestic and industrial use, and in particular with respect to transport (the development of vehicle-to-grid [V2G] systems), we’re going to have, I suspect, something of a technocratic divide between early adopters and those who are not so much traditionalists as confused about or overwhelmed by the pace of developments – remembering that most WEIRD countries have an increasingly ageing population. 

I’m speaking for myself here. Being not only somewhat long in the tooth but also dirt poor, I’m simply a bystander with respect to this stuff, but I hope to to get more integrated, smart and energetic about it over time. 

References

https://www.afr.com/companies/energy/the-future-of-power-is-transcontinental-submarine-supergrids-20210622-p5837a

Global supergrid vs. regional supergrids

https://en.wikipedia.org/wiki/Smart_grid

https://en.wikipedia.org/wiki/Vehicle-to-grid

Written by stewart henderson

March 15, 2022 at 7:33 pm