the new ussr illustrated

welcome to the Urbane Society for Skeptical Romantics, where pretentiousness is as common as muck

Posts Tagged ‘lithium mining

an assortment of new technology palaver

leave a comment »

I like the inset pic – very useful for the Chinese

Western Australia lithium mining boom

I’m hearing, better late than never, that lithium carbonate from Western Australia is in big demand. The state already provides most of the world’s lithium for all those batteries used to run smart devices, electric vehicles, and large-scale storage batteries such as South Australia’s Tesla-Neoen thingy at Jamestown (now 80% complete, apparently). Emissions legislation around the world will only add to the demand, with the French and British governments planning to ban the sale of petrol and diesel vehicles by 2040, following similar plans by India and Norway, and the major investments in EVs in China. Australia’s government, of course, is at the other end of the spectrum re EVs, but I’ve no doubt we’ll get there eventually (we’ll have to!). Tesla, Volvo, Nissan, Renault, Volkswagen and Mercedes are all pushing more EVs into the marketplace. So now’s the time, according to Money Boffins Inc, to buy shares in lithium and other battery minerals (I’ve never bought a share in my life). This lithium mining boom has been quite sudden and surprising to many pundits. In January of this year, only one WA mine was producing lithium, but by mid-2018 there will be eight, according to this article. The battery explosion, so to speak, is bringing increased demand for other minerals too, including cobalt, nickel, vanadium and graphite. Australia’s well-positioned to take advantage. Having said that, the amount of lithium we’re talking about is a tiny fraction of what WA exports in iron ore annually, but it’s already proving to be a big boost to the WA economy, and a big provider of jobs.

battery recycling

Of course all of this also poses a problem, as mentioned in my last post, and it’s a problem that the renewable energy sector should be at least ideologically driven to deal with: waste and recycling. Considering the increasing importance of battery technology in our world, and considering the many toxic components of modern batteries, such as nickel, lead acid, cadmium and mercury, it’s yet another disappointment that there’s no national recycling scheme for non-rechargeable batteries. Currently only lead acid batteries can be recycled, and the rest usually end up in landfill or are sent to be recycled overseas. So it’s been left to the industry to develop an Australian Battery Recycling Initiative (ABRI), which has an interesting website where you can learn about global recycling and many other things batterial – including, of course, how to recycle your batteries. Also, an organisation called Clean Up Australia has a useful battery recycling factsheet, which, for my own educational purposes I’m going to recycle here, at least partly. Battery types can be divided into primary, or single-use, and secondary, or rechargeable. The primary batteries generally use zinc and manganese in converting chemical to electrical energy. Rechargeable batteries use a variety of materials, including nickel cadmium, nickel metal hydride and of course lithium ion chemistry. Batteries in general are the most hazardous of waste materials, but there are also environmental impacts from battery production (mining mostly) and distribution (transport and packaging). As mentioned, Australian batteries are sent overseas for recycling – ABRI and other groups are trying to set up local recycling facilities. Currently a whopping 97% of these totally recyclable battery units end up in landfill, and – another depressing factoid – Australia’s e-waste is growing at 3 times the rate of general household waste. So the public is advised to use rechargeable batteries wherever possible, and to take their spent batteries to a proper recycling service (a list is given on the fact sheet). The ABRI website provides a more comprehensive list of drop-of services.

2015 registrations: Australia’s bar would be barely visible on this chart

EVs in Australia – a very long way to go

I recently gave a very brief overview of the depressing electric vehicle situation in Australia. Thinking of buying one? Good luck with that. However, almost all motorists are much richer than I am, so there’s hope for them. They’re Australia’s early adopters of course, so they need all the encouragement we can give them. Journalist Timna Jacks has written an article for the Sydney Morning Herald recently, trying to explain why electric vehicles have hit a dead end in Australia. High import duties, a luxury car tax and a lack of subsidies and infrastructure for electric vehicles aren’t exactly helping the situation. The world’s most popular electric car, the Nissan Leaf, is much more expensive here than in Europe or the US. And so on. So it’s hardly surprising that only 0.1% of all cars sold in Australia in 2015 were electric cars (compared with 23% and rising in EV heaven, aka Norway, 1.4% in France and 0.7% in the US). Of course Australia’s landscape’s more or less the opposite of compact, dense and highly urbanised Europe, and range anxiety might be a perennial excuse here. We have such a long way to go. I expect we’ll have to wait until shame at being the world’s laughing-stock is enough of a motivation.

Adelaide’s Tindo

I’ve been vaguely aware of Adelaide’s ‘green bus’ for some years but, mea culpa, haven’t informed myself in any depth up until now. The bus is called Tindo, which is a Kaurna aboriginal word meaning the sun. Apparently it’s the world’s first and only completely solar powered electric bus, which is quite amazing. The bus has no solar panels itself, but is charged from the solar panels at the Franklin Street bus station in the city centre. It’s been running for over four years now and I’m planning to take a trip on it in the very near future. I was going to say that it’ll be the first time I’ve been on a completely electric vehicle with no internal combustion engine but I was forgetting that I take tram trips almost every day. Silly me. Still, to take a trip on a bus with no noisy engine and no exhaust fumes will be a bit of a thrill for me. Presumably there will be no gear system either, and of course it’ll have regenerative braking – I’m still getting my head around this stuff – so the ride will be much less jerky than usual.

So here are some of the ‘specs’ I’ve learned about Tindo. It has a range of over 200 kilometres (and presumably this is assisted by the fact that its route is fixed and totally urban, so the regen braking system will be charging it up regularly). It uses 11 Swiss-made Zebra battery modules which are based on sodium nickel chloride, a type of molten salt technology. They have higher energy density, they’re lightweight and virtually maintenance free. According to the City of Adelaide website the solar PV system on the roof of the bus station is (or was – the website is annoyingly undated) ‘Adelaide’s largest grid-connected system, generating almost 70,000 kWh of electricity a year’. No connection to the ‘carbon-intensive South Australian electricity grid’ is another plus, though to be fair our grid is far less carbon intensive than Victoria’s which is almost all brown coal. South Australia’s grid runs on around half gas and half renewables, mostly wind. The regen braking, I must remind myself, means that when decelerating the bus uses no energy at all, and the motor electronically converts into an electrical generator, which generates electricity with the continued forward motion of the bus. There are many more specs and other bits of info on this Tindo factsheet.